首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
W Seghezzi  D Sanglard  A Fiechter 《Gene》1991,106(1):51-60
A second alkane-inducible cytochrome P450-encoding gene (CYP52A2) from the yeast Candida tropicalis was sequenced and characterized. CYP52A2 is located 1 kb upstream from CYP52A1, the previously characterized P450 gene [Sanglard and Loper, Gene 76 (1989) 121-136] and shows the same orientation. Like CYP52A1, CYP52A2 is induced by growth on alkane. Both promoter regions share repeats of the sequence CATGTGAA that could be of importance for the induction of the two genes. At the amino acid level, alk2 shows an overall identity of 68.2% and an overall similarity of 81.6% to alk1. Regions of high homology between the two proteins are found in the distal and proximal heme binding sites which contain the highly conserved cysteine residue as the fifth ligand to the heme iron. However, marked differences between the two proteins exist at their N-terminal end, which includes the transmembrane domain, and at the putative substrate-binding domain. Upon expression of CYP52A2 in Saccharomyces cerevisiae, alk2 was shown to hydroxylate hexadecane, but had no hydroxylation activity towards lauric acid, whereas alk1 showed both activities. Comparative immunoblots demonstrate that neither alk1 nor alk2 expressed in S. cerevisiae corresponds to the main cytochrome P450 present in C. tropicalis when grown on alkane.  相似文献   

2.
D Sanglard  A Fiechter 《FEBS letters》1989,256(1-2):128-134
The reexamination of a genomic lambda gt11 Candida tropicalis expression library for the presence of genes related to the previously reported alkane-inducible cytochrome P450alk gene (P450alk), which is the first member of the P450LII gene family, was undertaken. A positive clone with a DNA fragment having 69% similarity with a portion of P450alk was isolated. As in the case of P450alk, this new putative P450 gene was also induced by tetradecane when C. tropicalis was grown on this carbon source and was therefore named P450alk2, P450alk1 corresponding to the first isolated P450 gene. In addition to P450alk2, the existence of other P450alk-related genes is suggested by the hybridization pattern of P450alk1 and P450alk2 probes with the C. tropicalis genomic DNA. The P450LII gene family in C. tropicalis appears therefore to include several different members. This heterogeneity is presently a unique feature within yeast P450 gene families and resembles the situation existing in P450 gene families of higher eukaryotes.  相似文献   

3.
Using different DNA probes from the first two previously described alkane-inducible cytochrome P450 genes of the Candida tropicalis CYP52 gene family, we isolated five independent additional members by screening a genomic library under low-stringency conditions. These genes are not allelic variants and, when taken gogether, constitute the largest gene family known in this organism. The seven members of this gene family are located on four different chromosomes and four of them are tandemly arranged on the C. tropicalis genome. The products of the seven genes, alk1 to alk7, were compared to each other and revealed a high degree of divergence: the two most diverged proteins exhibit a sequence identity of only 32%. Six of the seven genes were shown to be induced by a variety of different aliphatic carbon sources but repressed when the organism was grown on glucose. Three of the five additional CYP52 genes could be successfully expressed in Saccharomyces cerevisiae and display different substrate specificities in in vitro assays with model substrates: alk2 and alk3 exhibit a strong preference for hexadecane, while alk4 and alk5 preferentially hydroxylate lauric acid.  相似文献   

4.
We have isolated the gene for cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis. This was accomplished by screening genomic libraries of strain ATCC750 in E. coli using a DNA fragment containing the yeast Saccharomyces cerevisiae 14DM gene. Identity of this gene was confirmed by a) observing a heme binding region common to all P450s after sequencing the 3' portion of the gene, and b) based upon tests of its expression in strains of Saccharomyces cerevisiae.  相似文献   

5.
6.
何峰  陈远童 《微生物学报》2005,45(4):504-509
细胞色素P450(CYP)是一种单加氧酶,在热带假丝酵母(Candidatropicalis)ω-氧化过程中发挥关键作用。通过对来源不同的P450基因进行同源性分析,首先克隆到热带假丝酵母1230中P450基因的部分序列,再利用基因组步行法克隆其未知序列,结果分别获得了两个P450同工酶基因CYPA14和CYPA16的完整序列。经PCR方法证实,二者在染色体上的位置相邻,其读码框分别编码522和540个氨基酸残基的肽链。经NCBIBLAST搜索比较后发现,二者与热带假丝酵母ATCC20336中的P450成员CYP52A14和CYP52A16分别编码的序列几乎完全一致,与热带假丝酵母ATCC750中的P450成员CYP52A2和CYP52A1也具有较高的相似性。同时,对经诱变后的几株二元酸生产菌株的CYPA14与CYPA16也进行了克隆和序列比较,发现部分序列中的个别氨基酸残基发生了突变。CYPA14和CYPA16均在酿酒酵母中获得了有效表达,其中CYPA16的P450表达含量高于CYPA14,后者有部分表达产物发生了变性。  相似文献   

7.
Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14 alpha-demethylase. Resistance is restored through complementation by the plasmid-borne wild type gene from either S. cerevisiae or Candida tropicalis. Neither Southern hybridization nor Western immunoblot techniques provided evidence for a second NADPH-cytochrome P450 reductase gene, suggesting that an alternate pathway may provide for the functions of this reductase in S. cerevisiae.  相似文献   

8.
9.
The genes for the alkane-inducible monooxygenase system of the yeast Candida tropicalis, namely a cytochrome P450alk (P450alk) and a NADPH cytochrome P450 oxidoreductase (NCPR) gene, were transferred in Saccharomyces cerevisiae. The P450alk gene was expressed in this host with the help of the yeast alcohol dehydrogenase I (ADHI) promoter and terminator, whereas the NCPR gene could be expressed with its own structural elements. The presence of P450alk in S. cerevisiae microsomal fractions resulted in a new acquired lauric acid terminal hydroxylation activity. Moreover, the same activity, coupled with the appearance of 12-hydroxylauric acid derivatives, could be obtained by the addition of lauric acid to intact cells expressing P450alk. The coordinate expression of the P450alk and NCPR genes in S. cerevisiae elevated the turnover rate of the P450alk monooxygenase activity about 2-fold.  相似文献   

10.
11.
Southern blot analysis under low-stringency conditions using a previously isolated n-alkane-inducible cytochrome P450 (P450alk) gene as a probe revealed the presence of multiple P450alk-related genes in the genome of Candida maltosa. Nine P450alk-related genes (one reported previously and eight in the present report) were isolated from a genomic library constructed from this strain, and these were classified on the basis of sequence similarities into three pairs of putative allelic genes and three nonallelic genes. Two pairs of these alleles were tandemly arranged in the genome. The complete nucleotide sequences of one of these pairs were determined and compared to other members of this P450 family (CYP52) in C. maltosa and C. tropicalis. Northern blot analysis further showed that these genes were regulated by carbon sources. These results provide evidence for a P450alk (CYP52) multigene family in C. maltosa.  相似文献   

12.
Three mammalian cytochromes P450 from the IIB subfamily, P450IIB11 from canine and P450IIB4 and P450IIB5 from rabbit, have been expressed in the yeast Saccharomyces cerevisiae by use of an autonomously replicating vector containing the galactose-inducible gal10 promoter. Cytochromes P450IIB4 and P450IIB5 are closely related proteins, with only 11 amino acid substitutions between them. P450IIB11 is a homologous protein, likely orthologous with IIB4 or IIB5, with 102 amino acid substitutions compared with the P450IIB4 protein and 106 compared with the P450IIB5 protein. The expressed proteins are functional in yeast microsomes, exhibiting activity toward androstenedione, 7-ethoxycoumarin, and, in some cases, progesterone. Expressed cytochromes P450IIB4 and P450IIB11 hydroxylate androstenedione with regio- and stereoselectivity characteristic of the purified, reconstituted proteins. A striking difference in the androstenedione metabolite profiles of IIB4 and IIB5 was observed, with IIB4 producing almost exclusively the 16 beta-hydroxy metabolite and IIB5 producing the 16 alpha-hydroxy and 15 alpha-hydroxy products. This is the first time that 15 alpha-hydroxylase activity has been associated with IIB4/IIB5. This activity has also been detected in liver microsomes from some, but not all, individual phenobarbital-induced rabbits tested and is largely inhibited by anti-rabbit P450IIB immunoglobulin G. These studies illustrate the utility of the yeast expression system for defining catalytic activities of individual mammalian cytochromes P450 and identifying new marker activities that can be utilized in liver microsomes.  相似文献   

13.
Seven P450/reductase fused enzymes were produced in Saccharomyces cerevisiae by expressing fused cDNAs consisting of bovine cytochrome P450c17 (P450c17) and yeast NADPH-cytochrome P450 reductase (reductase). These fused enzymes differed in the length and amino acid sequence of the hinge region between the P450 and reductase moieties. Expression of the fused constructs under the control of the yeast alcohol dehydrogenase I promoter and terminator of expression vector pAAH5 in S. cerevisiae AH22 cells resulted in the production of about 2-8 X 10(4) molecules per cell of the seven corresponding fused enzymes. Six of the fused enzymes incorporated a protoheme, as confirmed by reduced CO-difference spectra. Recombinant yeast strains producing each of the fused hemoproteins showed P450c17-dependent 17 alpha-hydroxylase activity toward progesterone. The most active fused enzyme, delta N23FE, which lacked the amino-terminal 23 amino acids of the reductase, showed about 10 times higher 17 alpha-hydroxylase activity than bovine P450c17, although the fused enzyme (delta N23FE)' with an amino acid sequence in the hinge region different from delta N23FE was less active than delta N23FE. The fused enzyme delta N0FE, consisting of P450c17 and whole reductase, showed about 1.8 times higher activity than bovine P450c17. No activity was found with delta N84FE lacking the amino-terminal 84 amino acids of the reductase moiety. P450c17-dependent C17,(20)-lyase activity toward 17 alpha-hydroxyprogesterone was detected to lesser extents in the recombinant yeast. Fused bovine P450c17/yeast reductase enzymes show enhanced 17 alpha-hydroxylase activity, and the length and amino acid sequence in the hinge region between the P450c17 and yeast reductase moieties can be important for efficient intramolecular electron transfer in the fused enzymes.  相似文献   

14.
C Cullin  D Pompon 《Gene》1988,65(2):203-217
Mouse liver cytochrome P-450 P1 was produced in the yeast Saccharomyces cerevisiae transformed by various expression vectors. The relative efficiency of the phosphoglycerate kinase and GAL10-CYC1 promoters to direct the P-450 P1 mRNA synthesis was determined. The level of protein synthesis was found to be dependent on the amount of the 5'-noncoding sequence of the original cDNA removed during the construction. Yeast-synthesised P-450 P1 was found to be integrated into the microsomal membrane in a fully functional form, as judged by Western blotting, optical spectra and enzymatic activities. The amount of P-450 reached up to 0.6% of the microsomal protein level. A nucleotide sequence coding for a chimeric enzyme in which 40 N-terminal codons of P-450 P1 were replaced by 36 N-terminal codons of P-450 P3 was constructed and expressed in yeast. The resulting protein retained full P-450 P1 activity and was produced with a similar efficiency suggesting that the P-450 N-terminal sequence is not involved in structures critical for the substrate specificities of the P1 isoenzyme.  相似文献   

15.
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25: 343-353, 1994). However, the enzymatic function of CYP78A1 hasn't been clarified yet. To characterized the enzymatic activity of CYP78A1, in this study, CYP78A1 cDNA and tobacco or yeast NADPH-cytochrome P450 oxidoreductase (P450 reductase) was expressed in the yeast Saccharomyces cerevisiae AH22 cells under the control of alcohol dehydrogenase promoter I and terminator. The reduced CO-difference spectrum of a microsomal fraction prepared from the transformed yeast cells expressing CYP78A1 and yeast P450 reductase showed a peak at 449 nm. Based on the spectrum, the content of a P450 molecule was estimated to be 45 pmol P450 equivalent/ mg of protein in the microsomal fraction. The recombinant yeast microsomes containing CYP78A1 and yeast P450 reductase were found to catalyze 12-monooxygenation of lauric acid. Based on these results, CYP78A1 preferentially expressed in developing inflorescences of Zea mays appeared to have participated in the monooxygenation of fatty acids.  相似文献   

16.
17.
Mammalian cytochrome P450 (P450) cDNAs were modified by partial or complete removal of their untranslated regions (UTRs). Expression efficiency of P450s in Saccharomyces cerevisiae was increased by the complete removal of the UTRs from the P450 cDNAs prior to insertion into an expression vector. A similar modification was effective in improving the expression of mammalian NADPH-P450 oxidoreductases in S. cerevisiae. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
Among 11 isoforms of the human cytochrome P450 enzymes metabolizing xenobiotics, CYP 1A1 and CYP 1A2 were major P450 species in the metabolism of the herbicides chlortoluron and atrazine in a yeast expression system. CYP1A2 was more active in the metabolism of both herbicides than CYP1A1. The fused enzymes of CYP1A1 and CYP1A2 with yeast NADPH-cytochrome P450 oxidoreductase were functionally active in the microsomal fraction of the yeast Saccharomyces cerevisiae and showed increased specific activity towards 7-ethoxyresorufin as compared to CYP1A1 and CYP1A2 alone. Then, both fused enzymes were each expressed in the microsomes of tobacco (Nicotiana tabacum cv. Samsun NN) plants. The transgenic plants expressing the CYP1A2 fusion enzyme had higher resistance to the herbicide chlortoluron than the plants expressing the CYP1A1 fusion enzyme did. The transgenic plants expressing the CYP1A2 fused enzyme metabolized chlortoluron to a larger extent to its non-phytotoxic metabolites through N-demethylation and ring-methyl hydroxylation as compared to the plants expressing the CYP1A1 fused enzyme. Thus, the possibility of increasing the herbicide resistance in the transgenic plants by the selection of P450 species and the fusion with P450 reductase is discussed.  相似文献   

19.
We made a biosensor based on ion-sensitive field effect transistor (ISFET) using P450 monooxygenase. ISFETs are electrical devices and have been used as pH sensors. We used genetically engineered P450 monooxygenase for our research because of its high enzymatic activity. The fusion enzyme between rat CYP1A1P450 monooxygenase and yeast NADPH-cytochrome P450 oxidoreductase was expressed in yeast Saccharomyces cerevisiae strain AH22. Yeast microsomal membranes were immobilized in an agarose layer on the ISFET. o-Deethylation of 7-ethoxycoumarin to 7-hydroxycoumarin was catalyzed by the enzyme in the presence of nicotinamide adenine dinucleotide phosphate reduced form (NADPH). Formation of 7-hydroxycoumarin from 7-ethoxycoumarin was also measured by fluorescence. The difference of the voltage between the ISFET device and control device without enzymes showed a voltage increase along with the enzymatic reaction of P450 monooxygenases, and this voltage increase in the device was inhibited by addition of MnCl(2), an inhibitor of P450 monooxygenase. There was a positive correlation between the voltage increase in the ISFET device and the fluorescence intensity. This is the first electrochemical biosensing using P450 monooxygenases immobilized on the ISFET, and is applicable to the sensing of chlorophenol compounds.  相似文献   

20.
A cDNA clone of a novel cytochrome P450, CYP76A4, was isolated from Petunia hybrida. The cDNA clone contained an open reading frame (ORF) encoding a predicted 510 amino acid polypeptide. The CYP76A4 cDNA was expressed in yeast Saccharomyces cerevisiae AH22. Recombinant yeast microsomes containing the CYP76A4 hemoprotein were found to catalyze (omega-1)-hydroxylation of lauric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号