首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
The effect of tributyltin chloride (TBTC) on rainbow trout (Salmo irideus) hemoglobin I (HbI) and hemoglobin IV (HbIV) was characterized by the steady-state fluorescence of intrinsic and extrinsic fluorescent probes. The fluorescence emission spectrum (lambdaex 280 nm) is greatly increased in intensity by the presence of the organotin in both proteins. Circular dichroism spectra in the same samples show a small decrease in theta222, a measure correlated with the percentage of the alpha-helical content. Morever, important changes in near-UV, Soret, and visible regions of CD were induced by TBTC. The correlation of data obtained with trout hemoglobins (HbI and HbIV) with similar measurements on globins suggests that the presence of heme is necessary for the interaction of the organotin compound with the proteins.  相似文献   

2.
Erythrocytes from trout Salmo irideus are characterized by four different hemoglobin components (HbI, HbII, HbIII and HbIV), HbI and HbIV being predominant. In this study we describe the interaction between trout hemoglobin (HbI and HbIV) and H2O2 using a chemiluminescence assay. Our data show that the reaction of hemoglobins with H2O2 produces a time-limited and significant increase of chemiluminescence signal. The half-life of the decay of this chemiluminescence signal was characteristic for each type of hemoglobin used. These results indicate the formation of excited molecules related to the interaction between trout hemoglobin and H2O2. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The Fe site structure in the recombinant wild-type and T721 mutant of the cooperative homodimeric hemoglobin (HbI) of the mollusc Scapharca itnaequivalvis has been investigated by measuring the Fe K-edge X-ray absorption near edge structure (XANES) spectra of their oxy, deoxy and carbonmonoxy derivatives, and the cryogenic photoproducts of the carbonmonoxy derivatives at T = 12 K. According to our results, the Fe site geometry in T72I HbI-CO is quite similar to that of human carbonmonoxy hemoglobin (HbA-CO), while in native HbI-CO it seems intermediate between that of HbA-CO and sperm whale MbCO. The XANES spectra of oxy and deoxy derivatives are similar to the homologous spectra of human HbA, except for T72I HbI, for which the absorption edge is blue-shifted (about + 1 eV) towards the spectrum of the oxy form. XANES spectra of the cryogenic photoproducts of HbA-CO (HbA*), HbI-CO (HbI*) and mutant HbI-CO (T72I HbI*) were acquired under continuous illumination at 12 K. The Fe-heme structures of the three photoproducts are similar; however, while in the case of HbA* and HbI* the data indicate incomplete structural relaxation of the Fe-heme towards its deoxy-like (T) form, the relaxation in T72I HbI* is almost completely towards the proposed "high affinity" Fe-heme structure of T72I HbI. This evidence suggests that minor tertiary restraints affect the Fe-heme dynamics of T72I HbI, corresponding to a reduction of the energy necessary for the T --> R structural transition, which can contribute to the observed dramatic enhancement in oxygen affinity of this hemoprotein, and the decreased cooperativity.  相似文献   

4.
The two Cepsilon-methyl methionine groups in cytochrome c have been chemically enriched (45%) with 13C. Their 13C NMR signals have been monitored in both the oxidized and reduced states and under various solution conditions. Methionine residue 80 showed characteristic chemical shift positions for the reduced Fe(II) and cyano-Fe(III) forms. No signal for methionine 80 was observed in the oxidized Fe(III) form due to the paramagnetic effect of the iron atom to which it is bonded, but the position of the methionine 65 signal was shifted, indicating that it is sensitive to the change of oxidation state. Two well resolved signals were observed at pH 11 for the Fe(III) form but only one was resolved at pH 2, indicating that while methionine 80 is definitely displaced from the iron atom at alkaline pH, it may not be in acid conditions.  相似文献   

5.
The dimeric hemoglobin isolated from Scapharca inaequivalvis, HbI, is notable for its highly cooperative oxygen binding and for the unusual proximity of its heme groups. We now report that the oxidized protein, an equilibrium mixture of a dimeric high spin aquomet form and a monomeric low spin hemichrome, binds ferrocyanide tightly which allows for internal electron transfer with the heme iron. Surprisingly, when ferricyanide-oxidized HbI is exposed to CO, its spectrum shifts to that of the ferrous CO derivative. Gasometric removal of CO leads to the oxidized species rather than to ferrous deoxy-HbI. At equilibrium, CO binds with an apparent affinity (p50) of about 10-25 mm of Hg and no cooperativity (20 degrees C, 10-50 mM buffers at pH 6.1). The kinetics of CO binding under pseudo-first order conditions are biphasic (t1/2 of 15-50 s at pH 6.1). The rates depend on protein, but not on CO concentration. The nitrite-oxidized protein is not reduced readily in the presence of CO unless one equivalent of ferrocyanide, but not of ferricyanide, is added. We infer that ferrocyanide, produced in the oxidation reaction, is tightly bound to the protein forming a redox couple with the heme iron. CO shifts the redox equilibrium by acting as a trap for the reduced heme. The equilibrium and kinetic aspects of the process have been accounted for in a reaction scheme where the internal electron transfer reaction is the rate-limiting step.  相似文献   

6.
The peroxidative activity of trout hemoglobins, HbI and HbIV, which differ in their conformation, was compared with that of HbA. Artificial substrates (guaiacol and dopamine) and more physiological substrates such as model lipid membranes containing unsaturated fatty acids were used. The results indicate that all the hemoglobin molecules assayed show different levels of peroxidative activity. The capability to act as peroxidases is greater in HbIV than in HbI and HbA. In contrast, native globins did not show peroxidase activity. The different peroxidative activity of the Hbs is discussed in relation to stability both vs. protein oxidation and protein dissociation. The results confirm the view that hemoglobin may be of importance in establishing the life span of the erythrocyte itself.  相似文献   

7.
The ferric form of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) displays a unique pH-dependent behavior involving the interconversion among a monomeric low-spin hemichrome, a dimeric high-spin aquomet six-coordinate derivative, and a dimeric high-spin five-coordinate species that prevail at acidic, neutral, and alkaline pH values, respectively. In the five-coordinate derivative, the iron atom is bound to a hydroxyl group on the distal side since the proximal Fe-histidine bond is broken, possibly due to the packing strain exerted by the Phe97 residue on the imidazole ring [Das, T. K., Boffi, A., Chiancone, E. and Rousseau, D. L. (1999) J. Biol. Chem. 274, 2916-2919]. To determine the proximal and distal effects on the coordination and spin state of the iron atom and on the association state, two heme pocket mutants have been investigated by means of optical absorption, resonance Raman spectroscopy, and analytical ultracentrifugation. Mutation of the distal histidine to an apolar valine causes dramatic changes in the coordination and spin state of the iron atom that lead to the formation of a five-coordinate derivative, in which the proximal Fe-histidine bond is retained, at acidic pH values and a high-spin, hydroxyl-bound six-coordinate derivative at neutral and alkaline pH values. At variance with native HbI, the His69 --> Val mutant is always high-spin and does not undergo dissociation into monomers at acidic pH values. The Phe97 --> Leu mutant, like the native protein, forms a monomeric hemichrome species at acidic pH values. However, at alkaline pH, it does not give rise to the unusual hydroxyl-bound five-coordinate derivative but forms a six-coordinate derivative with the proximal His and distal hydroxyl as iron ligands.  相似文献   

8.
M Sola  J A Cowan  H B Gray 《Biochemistry》1989,28(12):5261-5268
The NMR spectra of the high-potential iron protein from the photosynthetic bacterium Chromatium gracile and its ruthenium-labeled (His-42 and His-20) derivatives are reported. The isotropically shifted resonances in both the oxidized and reduced forms show a complex pH dependence due to the presence of three ionizable residues (Glu-44, His-20, and His-42). Assignments have been made to specific residues and the spectral features compared to those of other bacterial HiPIP's. The decrease in the reduction potential with increasing pH for this class of proteins is attributed to stabilization of the oxidized state of the cluster by delocalization of electron density onto the neighboring Tyr-19 residue.  相似文献   

9.
Lucina pectinata ctenidia harbor three heme proteins: sulfide-reactive hemoglobin I (HbI(Lp)) and the oxygen transporting hemoglobins II and III (HbII(Lp) and HbIII(Lp)) that remain unaffected by the presence of H(2)S. The mechanisms used by these three proteins for their function, including ligand control, remain unknown. The crystal structure of oxygen-bound HbII(Lp) shows a dimeric oxyHbII(Lp) where oxygen is tightly anchored to the heme through hydrogen bonds with Tyr(30)(B10) and Gln(65)(E7). The heme group is buried farther within HbII(Lp) than in HbI(Lp). The proximal His(97)(F8) is hydrogen bonded to a water molecule, which interacts electrostatically with a propionate group, resulting in a Fe-His vibration at 211 cm(-1). The combined effects of the HbII(Lp) small heme pocket, the hydrogen bonding network, the His(97) trans-effect, and the orientation of the oxygen molecule confer stability to the oxy-HbII(Lp) complex. Oxidation of HbI(Lp) Phe(B10) --> Tyr and HbII(Lp) only occurs when the pH is decreased from pH 7.5 to 5.0. Structural and resonance Raman spectroscopy studies suggest that HbII(Lp) oxygen binding and transport to the host bacteria may be regulated by the dynamic displacements of the Gln(65)(E7) and Tyr(30)(B10) pair toward the heme to protect it from changes in the heme oxidation state from Fe(II) to Fe(III).  相似文献   

10.
Knapp JE  Royer WE 《Biochemistry》2003,42(16):4640-4647
Cooperative ligand binding in the dimeric hemoglobin (HbI) from the blood clam Scapharca inaequivalvis is mediated primarily by tertiary structural changes, but with a small quaternary rearrangement (approximately 3 degrees), based on analysis of distinct crystal forms for ligated and unligated molecules. We report here ligand transition structures in both crystal forms. Binding CO to unligated HbI crystals results in a structure that approaches, but does not attain, the full allosteric transition. In contrast, removing CO from the HbI-CO crystals results in a structure that possesses all the key low affinity attributes previously identified from analysis of HbI crystals grown in the unligated state. Subsequent binding of CO shows the reversibility of this process. The observed structural changes include the quaternary rearrangement even under the constraints of lattice interactions, demonstrating that subunit rotation is an integral component of the ligand-linked structural transition in HbI. Analysis of both crystal forms, along with data from HbI mutants, suggests that the quaternary structural change is linked to the movement of the heme group, supporting a hypothesis that the heme movement is the central event that triggers cooperative ligand binding in this hemoglobin dimer. These results show both the effects of a crystal lattice in limiting quaternary structural transitions and provide the first example of complete allosteric transitions within another crystal lattice.  相似文献   

11.
T Andersson  E Thulin  S Forsén 《Biochemistry》1979,18(12):2487-2493
The enhancement of the 35Cl- transverse relaxation rate on binding of chloride ions to oxidized and reduced cytochrome c has been studied under conditions of variable sodium chloride concentration, temperature, pH, sodium phosphate, iron hexacyanide, and sodium cyanide concentration. The results revealed the presence of a strong binding site(s) for chloride in both oxidized and reduced cyt c, with a higher affinity in ferrocytochrome c. Competition experiments suggest that these sites also bind iron hexacyanide and phosphate. Cyanide binding to the iron in ferricytochrome c at alkaline and neutral pH was shown to decrease the binding of chloride. The pH dependence of the 35Cl- relaxation rate has been fitted by using literature pK values for ionizable groups. No indications of Na+ binding to oxidized and reduced cytochrome c have been observed by using 23Na+ NMR. Our results suggest that chloride is bound near the exposed heme edge and that the surface structure or dynamics in this region are different in the two oxidation states.  相似文献   

12.
Studies that elucidate the behavior of the hemoglobins (Hbs) and myoglobins upon reaction with hydrogen peroxide are essential to the development of oxygen carrier substitutes. Stopped-flow kinetics and resonance Raman data show that the reaction between hydrogen peroxide and oxygenated and deoxygenated ferric Hb I (oxy- and deoxy-HbI) from Lucina pectinata produce compound I and compound II ferryl species. The rate constants ratio (k23/k41) between the formation of compound II from compound I (k23) and the oxidation of the ferrous HbI (k41, i.e., 25 M(-1) s(-1)) of 12 x 10(-4) M suggests that HbI has a peroxidative capacity for removing H2O2 from solution. Resonance Raman presents the formation of both, met-aquo-HbI and compound II ferryl species in the cyclic reaction of HbI with H2O2. The ferric HbI species is maintained by the presence of H2O2; it can produce HbI compound I, or it can be reduced to a deoxy-HbI derivative to form HbI compound II upon reaction with H2O2. The compound II ferryl vibration frequency appears at 805 and 769 cm(-1) for HbIFe(IV)=(16)O and HbIFe(IV)=(18)O species, respectively. This ferryl mode indicates the absence of hydrogen bonding between the carbonyl group of the distal Q64 and the HbIFe(IV)=O ferryl moiety. The observation suggests that both the trans-ligand effect and the polarizabilty of the HbI heme pocket are responsible for the observed ferryl oxo vibrational energy. The vibrational mode also suggests that the carbonyl group of the distal Q64 is oriented toward the iron of the heme group, increasing the distal pocket electron density.  相似文献   

13.
The oxidation-reduction potentials of ferredoxin-NADP+ reductase and flavodoxin from the cyanobacterium Anabaena PCC 7119 were determined by potentiometry. The potentials at pH 7 for the oxidized flavodoxin/flavodoxin semiquinone couple (E2) and the flavodoxin semiquinone/hydroquinone couple (E1) were -212 mV and -436 mV, respectively. E1 was independent of pH above about pH 7, but changed by approximately -60 mV/pH below about pH 6, suggesting that the fully reduced protein has a redox-linked pKa at about 6.1, similar to those of certain other flavodoxins. E2 varied by -50 mV/pH in the range pH 5-8. The redox potential for the two-electron reduction of ferredoxin-NADP+ reductase was -344 mV at pH 7 (delta Em = -30 mV/pH). In the 1:1 electrostatic complex of the two proteins titrated at pH 7, E2 was shifted by +8 mV and E1 was shifted by -25 mV; the shift in potential for the reductase was +4 mV. The potentials again shifted following treatment of the electrostatic complex with a carbodiimide, to covalently link the two proteins. By comparison with the separate proteins at pH 7, E2 for flavodoxin shifted by -21 mV and E1 shifted by +20 mV; the reductase potential shifted by +2 mV. The potentials of the proteins in the electrostatic and covalent complexes showed similar pH dependencies to those of the individual proteins. Qualitatively similar changes occurred when ferredoxin-NADP+ reductase from Anabaena variabilis was complexed with flavodoxin from Azotobacter vinelandii. The shifts in redox potential for the complexes were used with previously determined values for the dissociation constant (Kd) of the electrostatic complex of the two oxidised proteins, in order to estimate Kd values for the interaction of the different redox forms of the proteins. The calculations showed that the electrostatic complexes, formed when the proteins differ in their redox states, are stronger than those formed when both proteins are fully oxidized or fully reduced.  相似文献   

14.
The cytochrome c' from Chromatium vinosum has been studied through 1H NMR in the pH range 4-11 in both the oxidized and the reduced forms. The 1H NMR spectra are similar to those of the other cytochrome c' systems. Three pKa values of 5.1, 7.0, and 9.2 have been observed for the oxidized species and tentatively assigned to the two carboxylate propionic residues of the heme moiety and to the iron-coordinated histidine 125, respectively. The spectra are consistent with an essentially S = 5/2 state in all the pH ranges investigated. Some evidence is provided for conformational flexibilities. Among the oxidized cytochromes c' the present one is capable of binding cyanide, giving rise to a low spin state. The reduced species is a typical high spin iron(II) system.  相似文献   

15.
Human placenta glutathione transferase (EC 2.5.1.18) pi undergoes an oxidative inactivation which leads to the formation of an inactive enzymatic form which is homogeneous in several chromatographic and electrophoretic conditions. This process is pH dependent, and it occurs at appreciable rate in alkaline conditions and in the presence of metal ions. Dithiothreitol treatment completely restores the active form. -SH titration data and electrophoretic studies performed both on the oxidized and reduced forms indicate that one intrachain disulfide is formed, probably between the two faster reacting cysteinyl groups of each subunit. By the use of a specific fluorescent thiol reagent the disulfide forming cysteines have been identified as the 47th and 101th residues. The disulfide formation causes changes in the tertiary structure of this transferase as appears by CD, UV, and fluorometric analyses; evidences are provided that one or both tryptophanyl residues of each subunit together with a number of tyrosyl residues are exposed to a more hydrophilic environment in the oxidized form. Moreover, electrophoretic data indicate that the subunit of the oxidized enzyme has an apparent molecular mass lower than that of the reduced transferase, thereby confirming structural differences between these forms.  相似文献   

16.
1. Micrococcus denitrificans excretes three catechol-containing compounds, which can bind iron, when grown aerobically and anaerobically in media deficient in iron, and anaerobically in medium with a high concentration of Ca2+. 2. One of these compounds was identified as 2,3-dihydroxybenzoic acid (compound I), and the other two were tentatively identified as N1N8-bis-(2,3-dihydroxybenzoyl)spermidine (compound II) and 2-hydroxybenzoyl-N-L-threonyl-N4[N1N8-bis-(2,3-dihydroxybenzoyl)]spermidine (compound III). 3. The equimolar ferric complex of compound III was prepared; compound III also forms complexes with Al3+, Cr3+ and Co2+ ions. 4. Cell-free extracts from iron-deficient organisms catalyse the formation of compound II from 2,3-dihydroxybenzoic acid and spermidine, and of compound III from compound II, L-threonine and 2-hydroxybenzoic acid; both reactions require ATP and dithiothreitol, and Mg2+ stimulates activity. The enzyme system catalysing the formation of compound II has optimum activity at pH 8.8 Fe2+ (35muM), Fe3+ (35muM) and Al3+ (65muM) inhibit the reaction by 50 percent. The enzyme system forming compound III has optimum activity at pH 8.6. Fe2+ (110 muM), Fe3+ (110 muM) and Al3+ (135 muM) inhibit the reaction by 50 percent. 5. At least two proteins are required for the formation of compound II, and another two proteins for its conversion into compound III. 6. The changes in the activities of these two systems were followed after cultures became deficient in iron. 7. Ferrous 1,10-phenanthroline is formed when a cell-free extract from iron-deficient cells is incubated with the ferric complex of compound III, succinate, NADH and 1,10-phenanthroline under N2.  相似文献   

17.
L Guarrera  G Colotti  E Chiancone  A Boffi 《Biochemistry》1999,38(31):10079-10083
FTIR spectra of native Scapharca homodimeric hemoglobin (HbI) and of the Phe97-->Ile mutant have been measured in the region 2400-2700 cm(-1) where the absorption of the sulfhydryl groups can be observed. In native HbI, the two Cys92 residues give rise to a relatively intense band centered at 2559 cm(-1) that is shifted to 2568 cm(-1) and strongly quenched upon ligand binding. In the Phe97-->Leu mutant, such ligand-linked changes are not observed and the strong peak at around 2560 cm(-1) persists in the liganded derivatives. In native HbI, the observed changes have been attributed to the decrease in polarity of the interface due to the ligand-induced extrusion of the Phe97 phenyl ring from the heme pocket to the interface and the subsequent release of several water molecules that are clustered in the vicinity of Cys92. In contrast, in the Phe97-->Leu mutant, the Leu residue does not leave the heme pocket upon ligand binding and the interface is unaltered. The Cys92/S-H infrared band, therefore, represents a sensitive probe of the structural rearrangements that take place in the intersubunit interface upon ligand binding to HbI. The heterotetrameric Scapharca hemoglobin HbII contains, in addition to the Cys92 residues in the interfaces, two extra sulfhydryl groups per tetramer (Cys9 in the B chain) that are exposed to solvent in the A helix. The frequency of the Cys9/S-H stretching vibration occurs at 2582 cm(-1) in the unliganded and at 2586 cm(-1) in the liganded derivative, pointing to the involvement of the A helix in the ligand-linked polymerization characteristic of HbII.  相似文献   

18.
The redox-induced structural changes at the active site of the superoxide reductase (SOR) from Desulfoarculus baarsii and Treponema pallidum have been monitored by means of FTIR difference spectroscopy coupled to electrochemistry. With this technique, the structure and interactions formed by individual amino acids at a redox site can be detected. The infrared data on wild-type, Glu47Ala, and Lys48Ile mutants of the SOR from D. baarsii provide experimental support for the conclusion that the two different coordination motifs observed in the three-dimensional structure of the SOR from Pyrococcus furiosus [Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W., and Rees, D. (2000) Biochemistry 39, 2499-2508] correspond to the two redox forms of the SOR iron center. We extend this result to the center II iron of SOR of the desulfoferrodoxin type. Similar structural changes are also observed upon iron oxidation in the SOR of T. pallidum. In D. baarsii, the IR modes of the Glu47 side chain support that it provides a monodentate ligand to the oxidized iron, while it does not interact with Fe(2+). Structural changes at the level of peptide bond(s) observed upon iron oxidation in wild-type are suppressed in the Glu47Ala mutant. We propose that the presence of the Glu side chain plays an important role for the structural reorganization accompanying iron oxidation. We identified the infrared modes of the Lys48 side chain and found that a change in its environment occurs upon iron oxidation. The lack of other structural changes upon the Lys48Ile mutation shows that the catalytic role of Lys, as evidenced by pulse radiolysis experiments [Lombard, M., Houée-Levin, C., Touati, D., Fontecave, M., and Nivière, V. (2001) Biochemistry 40, 5032-5040], is purely electrostatic, guiding superoxide toward the reduced iron.  相似文献   

19.
B Chance  C Saronio    J S Leigh  Jr 《The Biochemical journal》1979,177(3):931-941
Compound C2 is a product of the reaction of O2 and the mixed-valence state of cytochrome oxidase. The mixed-valence state of membrane-bound cytochrome oxidase is obtained at -24 degrees C, by using either ferricyanide or yeast peroxidase complex ES as oxidants, and the configurations of oxidized haem a and its associated copper (a3+Cua2+) and of reduced haem a3 and its associated copper (ac3+.CO.Cua3+) are obtained. The mixed-valence-state cytochrome oxidase mixed with O2 at -24 degrees C and flash-photolysed at -60 to -100 degrees C reacts with O2 and initially forms an oxy compound (A2) similar to that formed from the fully reduced state (A1). Thereafter the course of the reaction differs from that obtained in the fully reduced state, and absorbance increases are observed at 740--750 nm and 609 nm and a decrease at 444 nm, with no increase in absorbance at 655 nm. One possible attribution of the absorbance increases is to charge-transfer interaction between the iron of haem a3 and the copper associated with haem a3, Cua3(2+), having properties of a type-I 'blue' copper. A possible attribution of the decrease in absorbance at 444 nm is to liganding of a3(2+). A related explanation is that the 609 nm absorbance involves a charge-transfer interaction of both iron and copper as a mixed-valence binuclear complex, Cua3, having properties of a non-blue copper. Intermediates in addition to Compound C2 are not yet identifiable by chemical or spectroscopic tests. The kinetic and equilibrium properties of Compound C2 are described.  相似文献   

20.
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the alpha-helix content in the CD spectra, indicate more open conformation of the protein around the heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号