首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
T A Ono  H Mino 《Biochemistry》1999,38(27):8778-8785
Binding of Mn2+ to manganese-depleted photosystem II and electron donation from the bound Mn2+ to an oxidized YZ tyrosine were studied under the same equilibrium conditions. Mn2+ associated with the depleted membranes in a nonsaturating manner when added alone, but only one Mn2+ ion per photosystem II (PS II) was bound to the membranes in the presence of other divalent cations including Ca2+ and Mg2+. Mn2+-dependent electron donation to photosystem II studied by monitoring the decay kinetics of chlorophyll fluorescence and the electron paramagnetic resonance (EPR) signal of an oxidized YZ tyrosine (YZ+) after a single-turnover flash indicated that the binding of only one Mn2+ ion to the manganese-depleted PS II is sufficient for the complete reduction of YZ+ induced by flash excitation. The results indicate that the manganese-depleted membranes have only one unique binding site, which has higher affinity and higher specificity for Mn2+ compared with Mg2+ and Ca2+, and that Mn2+ bound to this unique site can deliver an electron to YZ+ with high efficiency. The dissociation constant for Mn2+ of this site largely depended on pH, suggesting that a single amino acid residue with a pKa value around neutral pH is implicated in the binding of Mn2+. The results are discussed in relation to the photoactivation mechanism that forms the active manganese cluster.  相似文献   

2.
The acidic residues Asp-111, Asp-113, and Glu-115 of Escherichia coli DNA topoisomerase I are located near the active site Tyr-319 and are conserved in type IA topoisomerase sequences with counterparts in type IIA DNA topoisomerases. Their exact functional roles in catalysis have not been clearly defined. Mutant enzymes with two or more of these residues converted to alanines were found to have >90% loss of activity in the relaxation assay with 6 mM Mg(II) present. Mg(II) concentrations (15-20 mM) inhibitory for the wild type enzyme are needed by these double mutants for maximal relaxation activity. The triple mutant D111A/D113A/E115A had no detectable relaxation activity. Mg(II) binding to wild type enzyme resulted in an altered conformation detectable by Glu-C proteolytic digestion. This conformational change was not observed for the triple mutant or for the double mutant D111A/D113A. Direct measurement of Mg(II) bound showed the loss of 1-2 Mg(II) ions for each enzyme molecule due to the mutations. These results demonstrate a functional role for these acidic residues in the binding of Mg(II) to induce the conformational change required for the relaxation of supercoiled DNA by the enzyme.  相似文献   

3.
19 F NMR spectroscopy have been applied to evaluate metal ion binding by the representative PvuII endonuclease in the absence of substrate. In separate experiments, ITC data demonstrate that PvuII endonuclease binds 2.16 Mn(II) ions and 2.05 Ca(II) metal ions in each monomer active site with K d values of  ≈ 1 mM. While neither calorimetry nor protein NMR spectroscopy is directly sensitive to Mg(II) binding to the enzyme, Mn(II) competes with Mg(II) for common sites(s) on PvuII endonuclease. Substitution of the conserved active site carboxylate Glu68 with Ala resulted in a loss of affinity for both equivalents of both Ca(II) and Mn(II). Interestingly, the active site mutant D58A retained an affinity for Mn(II) with K d  ≈ 2 mM. Mn(II) paramagnetic broadening in 19F spectra of wild-type and mutant 3-fluorotyrosine PvuII endonucleases are consistent with ITC results. Chemical shift analysis of 3-fluorotyrosine mutant enzymes is consistent with a perturbed conformation for D58A. Therefore, free PvuII endonuclease binds metal ions, and metal ion binding can precede DNA binding. Further, while Glu68 is critical to metal ion binding, Asp58 does not appear to be critical to the binding of at least one metal ion and appears to also have a role in structure. These findings provide impetus for exploring the roles of multiple metal ions in the structure and function of this representative endonuclease. Received: 30 March 1999 / Accepted: 28 September 1999  相似文献   

4.
The binding of cations by parvalbumins was studied by the proton relaxation enhancement (PRE) method using the paramagnetic probes Gd(III) and Mn(II). Gd(III) appears as a specific probe of the primary sites CD and EF with the following binding parameters: n = 2, KdGd = 0.5 x 10(-11) M and epsilon b = 2.3. The low value of epsilon b is the result of a nearly complete dehydration of the protein bound ions. Competition experiments between Gd(III) and various diamagnetic cations show the following order of affinity for the EF and CD sites: Mg2+ less than Zn2+ less than Sr2+ less than Ca2+ less than Cd2+ less than La3+ less than or equal to Gd3+. Mn 2+ is a specific probe of a secondary site with the following binding parameters: n = 1, KdMn = 0.6 x 10(-3) M and epsilon b = 17. The high value of epsilon b suggests that the protein bound Mn(II) has retained most of its hydration shell. Competition experiments between (Mn(II) and different cations show similar affinities for this site: Ca2+ less than or equal to Mg2+ less than or equal to Cd2+ less than or equal to Mn2+. This secondary site is located near the EF primary site.  相似文献   

5.
The electron spin resonance (ESR) technique was used to evaluate binding constants for Ca(II) and Mg(II) in interaction with low density lipoprotein (LDL). The Ca(II) or Mg(II) ions competed with the paramagnetic Mn(II) ions for the same binding sites of two different classes on the LDL surface. For each ion competing with Mn(II), the solutions of eight non-linear competition equations were fit to the experimental titration curves, with two adjustable parameters, the two binding constants. The derived "intrinsic" values (the values corrected for the electrolyte-induced change of the surface potential) for "strong" binding sites for Ca(II) (170 +/- 85 M-1) and Mg(II) (60 +/- 30 M-1) differ significantly from the respective value for Mn(II) (760 M-1). The values for the "weak" binding sites (18 M-1, 15 M-1 and 10 M-1 for Mn(II), Ca(II) and Mg(II), respectively are in the range of the binding constants for these ions in interaction with model membranes.  相似文献   

6.
Centrifuge transport, equilibrium dialysis, and electron paramagnetic resonance studies on the binding of Mn2+ to myosin revealed two sets of noninteracting binding sites which are characterized at low ionic strength (0.016 M KCl) by affinity constants of 10(6) M-1 (Class I) and 10(3) M-1 (Class II), respectively. At 0.6 M KCl concentration, the affinity of Mn2+ for both sets of sites is reduced. The maximum number of binding sites is 2 for the high affinity and 20 to 25 for the low affinity set. Other divalent metal ions displace Mn2+ from the high affinity sites in the following order of effectiveness: Ca greater than Mg = Zn = Co greater than Sr greater than Ni. The inhibitory effects of Mg2+ and Ca2+ upon the Mn2+ binding are competitive with inhibitor constants of 0.75 to 1 mM which is similar to that of the low affinity divalent metal ion binding sites. Exposure of myosin to 37 degrees partially inhibits Mn2+ binding to Class I parallel with inhibition of ATPase activity. The binding of Mn2+ to the high affinity binding sites is not significantly influenced by ADP or PPi, although Mn2+ increases the affinity of ADP binding to myosin at high ionic strength.  相似文献   

7.
Mn(II) has been proposed as a potential modulator of various important CNS enzymes, particularly glutamine synthetase, which is compartmentalized in the cytoplasm of glia. Previous studies demonstrated that total glial Mn(II) was 50–57 M, of which 30–40% occurs in the cytoplasm. In the present study, electron spin resonance (ESR) was used to determine that the concentration of free cytoplasmic Mn(II) in cultured chick glial cells is 0.8 (±0.2) M, very near Kd for the GS-Mn(II) complex. No free Mn(II) could be detected in glial mitochondria. Association of Mn(II) with brain glutamine synthetase (GS) was assessed under in vivo conditions in the presence of millimolar Mg(II) by trapping bound54Mn(II) ions in the active site with irreversible inhibitors, namely methionine-sulfoximine (MSOX) or specific analogues thereof plus ATP. Ovine brain tissue was lysed directly into buffer containing Mn(II), 3 mM Mg(II), 1 mM MSOX, 1 mM ATP, 200 mM KCl, and 20 mM NaCl. Alternatively, primary cultures of chick glial cells were permeabilized into these inactivation mixtures. -Methyl-d,l-prothionine-S,R-sulfoximine was used to specifically inhibit the mechanistically-related enzyme -glutamyl-cysteine synthetase prior to specific inactivation of GS by -ethyl-d,l-methionine-S,R-sulfoximine. Even inthe presence of 2–3 mM Mg(II), with only 5–10 M Mn(II) present, approximately 20–30% of GS subunits were trapped with bound Mn(II). These results indicate that brain GS exhibits a high degree of specificity for binding Mn(II) over Mg(II) and that Mn(II) binds to GS to a significant extent under in vivo conditions.  相似文献   

8.
Dupureur CM  Conlan LH 《Biochemistry》2000,39(35):10921-10927
In efforts to understand the mechanisms of many nucleic acid enzymes, the first site-directed mutations are made at conserved acidic active residues. Almost without exception, the low or null activities of the resulting variants are attributed to the importance of the acidic residue(s) to the ligation of required metal ions. Using (25)Mg NMR spectroscopy as a direct probe of metal ion binding and the homodimeric PvuII restriction endonuclease as a model system, this interpretation is examined and clarified. Our results indicate that Mg(II) binds wild-type PvuII endonuclease in the absence of DNA with a K(d,app) of 1.9 mM. Hill analysis yields an n(H) coefficient of 1.4, a value consistent with the binding of more than one Mg(II) ion per monomer active site. Variable pH studies indicate that two ionizable groups are responsible for Mg(II) binding by wild-type PvuII endonuclease near physiological pH. The pK(a,app) for these ionizations is 6.7, a value which is unusual for acidic residues but consistent with data obtained for critical groups in MunI endonuclease and a number of other hydrolases. To assign residues critical to ligating Mg(II), binding measurements were performed on the low activity catalytic site mutants E68A and D58A. As expected, E68A binds Mg(II) ions very weakly (K(d,app) approximately 40 mM), implicating Glu68 as critical to Mg(II) binding. Interestingly, while D58A has only residual specific activity, it retains an affinity for Mg(II) with a K(d,app) of 3.6 mM and exhibits a Hill coefficient of 0.7. Moreover, in this variant, multiple ionizable groups with pK(a,app) of 7.2 are involved in Mg(II) binding, suggesting a shuffling of Mg(II) ligands in the active site. These data indicate that Asp58 is important for the critical positioning of metal ion(s) required for catalysis.  相似文献   

9.
We have studied the electron paramagnetic resonance (epr) spectra of complexes of apo-yeast enolase with 65Cu+2 in the presence and absence of substrate and magnesium ion. An unusual epr spectrum with large g parallel, large g and A rhombicity and very narrow line-widths (10 G) is seen for the first two 65Cu+2 bound in the presence of substrate 2-phosphoglycerate (2PGA). the epr parameters, consistent with rhombic and tetragonal distortion of an octahedral geometry of the coordination sphere of the Cu+2 are g = (2.123, 2.042, 2.405) and A = (2.58, 4.19, 12.0) mK. The high g parallel and absence of super-hyperfine splitting are strong evidence for absence of nitrogen ligands. In the presence of Mg+2 and 2PGA, the Cu+2-enolase solutions exhibit a complex epr spectrum reflecting exchange and dipolar interaction between the first two Cu+2 ions bound. The spectra of Cu+2 plus enolase in the presence and absence of Mg+2 without 2PGA are distinct but not unambiguous, each reflecting at least two inequivalent binding sites. In addition to providing information on the geometry and location of the divalent cation binding sites, the data show unequivocally that imidazole residues, previously found to have a role in catalysis, do not participate in Cu+2 binding. Although Cu+2 does not activate the enzyme, direct binding measurements show that Cu+2 competes stoichiometrically with the activating ion, Mg+2. A reinterpretation of earlier Mn+2 enolase studies is proposed to reconcile the Cu+2 and Mn+2 data.  相似文献   

10.
The influence of magnesium(II) and copper(II) ions on the binding of ciprofloxacin to double stranded calf thymus DNA was studied by fluorescence emission spectroscopy, ultraviolet- and circular dichroism (CD) spectroscopy. The interaction of ciprofloxacin and copper(II) ions was followed by strong fluorescence quenching which was almost unaffected by the presence of DNA. On the other hand, only a slight decrease in fluorescence emission intensity, which was enhanced in the presence of DNA, was observed for ciprofloxacin interaction with magnesium(II) ions. Furthermore, magnesium(II) ions increase the thermal stability of the DNA, while, in the presence of ciprofloxacin, the degree of stabilisation is smaller. In contrast, copper(II) ions destabilise double helical DNA to heat, while ciprofloxacin slightly affects only the second transition of the biphasic melting curve of calf thymus DNA. Magnesium(II) ions at 25 degrees C induce conformational transitions of DNA at concentrations of 1.5 mM and 2.5 M, as monitored by CD. On the other hand copper(II) ions induce only one conformational transition, at a concentration of 12.7 microM. At higher concentrations of copper(II) ions (c>700 microM) DNA starts to precipitate. Significant changes in the CD spectra of DNA were observed after addition of ciprofloxacin to a solution containing DNA and copper(II) ions, but not to DNA and magnesium(II) ions. Based on our spectroscopic results, we propose that copper(II) ions are not directly involved into ciprofloxacin binding to DNA via phosphate groups as it has been suggested for magnesium(II) ions.  相似文献   

11.
Bovine calmodulin, spin-labeled at tyrosine-99, has been utilized in electron paramagnetic resonance (EPR) studies to investigate calmodulin interactions with Ca(II), Cd(II), and Mg(II). The addition of either Ca(II) or Cd(II) to apo-calmodulin results in a complex capable of activating target enzymes, such as 3', 5'-cyclic nucleotide phosphodiesterase (J. M. Buccigross, C. L. O'Donnell, and D. J. Nelson, Biochem. J. 235 677 [1986]), while Mg(II) is known to be incapable of activating calmodulin toward any of its target enzymes. Additions of Ca(II) and Cd(II) to spin-labeled apo-calmodulin gave rise to very similar changes in the EPR spectrum of the bound label, consistent with a dramatic decrease in the mobility of the nitroxide spin-label covalently attached to tyrosine-99. Addition of Mg(II) to spin-labeled apo-calmodulin caused no change in the EPR spectrum of the bound label. Thus, the conformational changes induced by Ca(II) and Cd(II) ion binding to calmodulin, which lead to decreased tyrosine-99 spin label mobility, are clearly not occurring when Mg(II) ion binds. These results are consistent with the results of other spectroscopic studies, which indicate that "activating" metal ions, such as Ca(II) and Cd(II), produce calmodulin conformers that are different from those produced by "inactivating" metal ions, such as Mg(II).  相似文献   

12.
The plastocyanin binding domain of photosystem I.   总被引:2,自引:0,他引:2       下载免费PDF全文
The molecular recognition between plastocyanin and photosystem I was studied. Photosystem I and plastocyanin can be cross-linked to an active electron transfer complex. Immunoblots and mass spectrometric analysis of proteolytic peptides indicate that the two negative patches conserved in plant plastocyanins are cross-linked with lysine residues of a domain near the N-terminus of the PsaF subunit of photosystem I. Conversion of these negative to uncharged patches of plastocyanin by site-directed mutation D42N/E43Q/D44N/E45Q and E59Q/E60Q/D61N respectively, reveals the first patch to be essential for the electrostatic interaction in the electron transfer complex with photosystem I and the second one to lower the redox potential. The domain in PsaF, not found in cyanobacteria, is predicted to fold into two amphipathic alpha-helices. The interacting N-terminal helix lines up six lysines on one side which may guide a fast one-dimensional diffusion of plastocyanin and provide the electrostatic attraction at the attachment site, in addition to the hydrophobic interaction in the area where the electron is transferred to P700 in the reaction center of photosystem I. This two-step interaction is likely to increase the electron transfer rate by more than two orders of magnitude in plants as compared with cyanobacteria. Our data resolve the controversy about the function of PsaF.  相似文献   

13.
14.
Two extrinsic probes, pyrene-maleimide and eosin-maleimide, were used to label specific SH groups of the enzyme myo-inositol monophosphatase. The fluorescence of pyrene-monophosphatase is enhanced upon addition of the activating metal ions Co(II) and Mg(II). Co(II) ions bind with a dissociation constant of 4 μM, whereas the apparent activation constant K a is 0.4 mM. Energy transfer measurements demonstrated that the pyrene chromophore, covalently linked to Cys-218, is within 9 Å of the metal ion Tb(III) coordinated to the metal-binding site. The phosphorescence emitted by eosin covalently linked to the protein is quenched by the addition of the activating cations Co(II) and Mg(II). Phosphorescence titrations conducted under anaerobic conditions were used to determine a dissociation constant of approximately 3 μM for the binding of Co(II) ions. The results are consistent with the hypothesis that two activating ions per monomeric subunit participate in the catalytic mechanism. The affinity of the tightly bound ion is at least 100-fold greater than the affinity of the weakly bound ion.  相似文献   

15.
Rat matrix-induced alkaline phosphatase is an enzyme which requires magnesium and zinc ions for its maximal activity. Two Zn(II) ions and one Mg(II) ion are bound to each subunit of native dimeric enzyme. The presence of magnesium ion (10-100 microM) or zinc ion (7-20 nM) alone is sufficient to stimulate apoenzyme activity. However maximal activity (264 U/mg) requires the presence of both ions. Binding of Zn(II) ions to the Mg(II) binding site causes a strong inhibition of the apoenzyme while the binding of Mg(II) on Zn(II) binding site is not sufficient to stimulate PNPPase activity of the apoenzyme. Binding of both ions to the enzyme molecule did not change the apparent dissociation constant for PNPP hydrolysis.  相似文献   

16.
The visible and ultraviolet circular dichroic spectra resulting from the interaction of bovine alpha-lactalbumin with successive Cu(II) ions have been recorded under a variety of conditions. Analysis of the observed change-transfer and d-d band transitions can be made in terms of two kinds of binding sites: at a histidyl group and at the N-terminal amino group, respectively. At basic pH the amide nitrogens of the peptide backbone progressively take part in the coordination. The occupation of the high affinity calcium binding site by Ca(II) and Mn(II) does not influence the Cu(II) binding process, suggesting that there is no direct interaction between this site and the Cu(II) binding sites.  相似文献   

17.
Magnesium is essential for the catalysis reaction of Escherichia coli primase, the enzyme synthesizing primer RNA chains for initiation of DNA replication. To map the Mg(2+) binding site in the catalytic center of primase, we have employed the iron cleavage method in which the native bound Mg(2+) ions were replaced with Fe(2+) ions and the protein was then cleaved in the vicinity of the metal binding site by adding DTT which generated free hydroxyl radicals from the bound iron. Three Fe(2+) cleavages were generated at sites designated I, II, and III. Adding Mg(2+) or Mn(2+) ions to the reaction strongly inhibited Fe(2+) cleavage; however, adding Ca(2+) or Ba(2+) ions had much less effect. Mapping by chemical cleavage and subsequent site-directed mutagensis demonstrated that three acidic residues, Asp345 and Asp347 of a conserved DPD sequence and Asp269 of a conserved EGYMD sequence, were the amino acid residues that chelated Mg(2+) ions in the catalytic center of primase. Cleavage data suggested that binding to D345 is significantly stronger than to D347 and somewhat stronger than to D269.  相似文献   

18.
Metal binding to serum albumins is examined by oxidative protein-cleavage chemistry, and relative affinities of multiple metal ions to particular sites on these proteins were identified using a fast and reliable chemical footprinting approach. Fe(ii) and Cu(ii), for example, mediate protein cleavage at their respective binding sites on serum albumins, in the presence of hydrogen peroxide and ascorbate. This metal-mediated protein-cleavge reaction is used to evaluate the binding of metal ions, Na(+), Mg(2+), Ca(2+), Al(3+), Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ce(3+) to albumins, and the relative affinities (selectivities) of the metal ions are rapidly evaluated by examining the extent of inhibition of protein cleavage. Four distinct systems Fe(II)/BSA, Cu(II)/BSA, Fe(II)/HSA and Cu(II)/HSA are examined using the above strategy. This metallomics approach is novel, even though the cleavage of serum albumins by Fe(II)/Cu(II) has been reported previously by this laboratory and many others. The protein cleavage products were analyzed by SDS PAGE, and the intensities of the product bands quantified to evaluate the extent of inhibition of the cleavage and thereby evaluate the relative binding affinities of specific metal ions to particular sites on albumins. The data show that Co(II) and Cr(III) showed the highest degree of inhibition, across the table, followed by Mn(II) and Ce(III). Alakali metal ions and alkaline earth metal ions showed very poor affinity for these metal sites on albumins. Thus, metal binding profiles for particular sites on proteins can be obtained quickly and accurately, using the metallomics approach.  相似文献   

19.
M Good  M Vasák 《Biochemistry》1986,25(11):3328-3334
The C-terminal segment of rabbit liver metallothionein 1 (alpha-fragment) containing four paramagnetic Co(II) ions was obtained by stoichiometric replacement of the originally bound diamagnetic Cd(II) ions. The latter form was prepared by limited proteolysis with subtilisin as described previously [Winge, D. R., & Miklossy, K. A. (1982) J. Biol. Chem. 257, 3471-3476]. Electronic absorption, magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) measurements were employed to monitor the stepwise incorporation of Co(II) ions into the metal-free fragment. Absorption and MCD spectra of the apofragment containing the first 3 Co(II) equiv show the typical features of tetrahedral tetrathiolate Co(II) coordination. However, in the d-d region only small changes in the visible and no apparent change in the near-infrared region are discernible when the fourth Co(II) is bound. This unusual spectral behavior was not seen in Co(II) substitution of native metallothionein [Vasák, M., & K?gi, J. H. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6709-6713] and may indicate a different cluster geometry. In the charge-transfer region, the binding of all 4 Co(II) equiv is accompanied by characteristic increments of the thiolate S----Co(II) bands. As in the formation of Co(II)7-metallothionein, the development of the charge-transfer and EPR spectral properties upon binding of the first 2 Co(II) equiv to the apofragment is indicative of isolated, noninteracting tetrahedral tetrathiolate Co(II) complexes. The binding of the additional Co(II) ion is accompanied by a red shift in the charge-transfer region and by the dramatic loss of paramagnetism in the EPR spectra, both diagnostic of the formation of metal-thiolate cluster structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The first direct equilibrium dialysis titration of the blood coagulation protein bovine prothrombin fragment 1 with Mg(II) is presented. Fragment 1 has fewer thermodynamic binding sites for Mg(II) than Ca(II), less overall binding affinity, and significantly less cooperativity. Several nonlinear curve fitting models were tested for describing the binding of fragment 1 with Mg(II), Ca(II), and mixed metal binding data. The Mg(II) data is represented by essentially five equivalent, noninteracting sites; for Ca(II), a model with three tight, cooperative sites and four "loose", equal affinity, noninteracting sites provides the best model. Based on the reported equilibrium dialysis data and in conjunction with other experimental data, a model for the binding of Ca(II) and Mg(II) to bovine prothrombin fragment 1 is proposed. The key difference between the binding of these divalent ions is that Ca(II) apparently causes a specific conformational change reflected by the cooperativity observed in the Ca(II) titration. The binding of Ca(II) ions to the three tight, cooperative sites establishes a conformation that is essential for phospholipid X Ca(II) X protein binding. The filling of the loose sites with Ca(II) ions leads to charge reduction and subsequent phospholipid X Ca(II) X protein complex interaction. Binding of Mg(II) to bovine prothrombin fragment 1 does not yield a complex with the necessary phospholipid-binding conformation. However, Mg(II) is apparently capable of stabilizing the Ca(II) conformation as is observed in the mixed metal ion binding data and the synergism in thrombin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号