首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoacylglycerol lipase (MAGL) has an essential role in the catabolic pathway of the endocannabinoid 2-arachidonoylglycerol, which makes it a potential target for highly specific inhibitors for the treatment of a number of diseases. We designed and synthesized a series of carbamate analogues of URB602. We evaluated their inhibitory activity toward human MAGL in vitro both in cell culture and lysates. The target compounds exhibited moderate to excellent inhibitory activity against MAGL. The most promising compound 2b showed good inhibitory activity with IC50 value of 4.5?±?0.70?μM reducing MAGL activity to 82% of controls at 10?μM compared to 66% for the parent compound URB602. Interestingly, compounds 2b and 2c induce cell death through the inhibition of MAGL. Molecular modelling approaches and docking studies, used to investigate inhibitory profiles, indicated that trifluoromethyl substitutions of the aryl group and the benzene ring present at the oxygen side of the carbamate molecule had a significant impact on the activity.  相似文献   

2.
Cannabinoid system plays an important role in controlling neuronal excitability and brain function. On the other hand, modulation of gamma-aminobutyric acid (GABA) transmission is one of the initial strategies for the treatment of seizure. The aim of the present study was to evaluate possible interaction between cannabinoidergic and GABAergic systems in pentylenetetrazole (PTZ)-induced acute seizure in rat. Drugs were administered by intracerebroventricular (i.c.v.) administration 20 min before a single intraperitoneal (i.p.) injection of PTZ and the latency to the first generalized tonic-clonic seizure was measured. Both the cannabinoid receptor agonist WIN55212-2 (10, 30, 50 and 100 μg/rat) and the GABA-A receptor agonist isoguvacine (IGN; 10, 30 and 50 μg/rat) significantly increased the latency of seizure occurrence. Moreover, the fatty acid amide hydrolase inhibitor URB597 showed no anticonvulsive effect while the monoacyl glycerol lipase (MAGL) inhibitor URB602 (10, 50 and 100 μg/rat) protected rats against PTZ-induced seizure. Moreover, co-administration of IGN and cannabinoid compounds attenuated the anticonvulsant action of both WIN55212-2 and IGN in this model of seizure. Our data suggests that exogenous cannabinoid WIN55212-2 and MAGL inhibitor URB602 imply their antiseizure action in part through common brain receptorial system. Moreover, the antagonistic interaction of cannabinoids and IGN in protection against PTZ-induced seizure could suggest the involvement of GABAergic system in their anticonvulsant action.  相似文献   

3.
A series of fumagillin analogues targeted at understanding tolerability of MetAP2 toward substitution at C4 and C6 were synthesized. Initially, the C6 side chain was maintained as cinnamoyl ester and C4 was modified. It was concluded that replacing the natural C4 of fumagillin with a benzyl oxime at C4 resulted in moderate loss of activity toward binding to MetAP2. Placement of a primary or secondary carbamate at C6 did not improve the potency of compounds toward inhibition of MetAP2. However, the inhibitory activity against MetAP2 was gained back by placing polar groups such as piperazinyl carbamate at C6. Small alkyl substituents on the amine of piperazinyl carbamate were well tolerated.  相似文献   

4.
C-terminal analogues of neuropeptide Y (NPY) of small molecular size have been synthesized. The influence of chain length, single or multiple amino acid substitution, and segment substitutions on receptor binding, pre- and postsynaptic biological activity, and conformational properties have been investigated. Receptor binding and in vivo assays revealed biological activity for NPY Ac-25-36 that increased with increasing alpha-helicity. In attempts to stabilize the alpha-helical content, three independent types of modified NPY Ac-25-36 analogues were synthesized. Strong agonistic activities could be detected in a series of discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was NPY 1-4-Aca-25-36 (Aca, epsilon-aminocaproic acid). For the first time conformational properties of a series of small NPY analogues have been investigated by CD, and correlated with biological activity and receptor binding. A C-terminal dodecapeptide segment of NPY with an amount of 50% substitution to the native C-terminal sequence of NPY was found to exhibit significant receptor binding.  相似文献   

5.
Monoacylglycerol lipase (MAGL) is one of the key enzymes of the endocannabinoid system (ECS). It hydrolyzes one of the major endocannabinoid, 2-arachidonoylglycerol (2-AG), an endogenous full agonist at G protein coupled cannabinoid receptors CB1 and CB2. Numerous studies showed that MGL inhibitors are potentially useful for the treatment of pain, inflammation, cancer and CNS disorders. These provocative findings suggested that pharmacological inhibition of MAGL function may confer significant therapeutic benefits. In this study, we presented hybrid ligand and structure-based approaches to obtain a novel set of virtual leads as MAGL inhibitors. The constraints used in this study, were Glide score, binding free energy estimates and ADME properties to screen the ZINC database, containing approximately 21 million compounds. A total of seven virtual hits were obtained, which showed significant binding affinity towards MAGL protein. Ligand, ZINC24092691 was employed in complex form with the protein MAGL, for molecular dynamics simulation study, because of its excellent glide score, binding free energy and ADME properties. The RMSD of ZINC24092691 was observed to stay at 0.1 nm (1 Å) in most of the trajectories, which further confirmed its ability to inhibit the protein MAGL. The hits were then evaluated for their ability to inhibit human MAGL. The compound ZINC24092691 displayed the noteworthy inhibitory activity reducing MAGL activity to 21.15% at 100 nM concentration, with an IC50 value of 10 nM.  相似文献   

6.
A series of meperidine analogues was synthesized and the binding affinities for the dopamine and serotonin transporters were determined. The substituents on the phenyl ring greatly influenced the potency and selectivity of these compounds for the transporter binding sites. In general, meperidine (3) and its analogues were more selective for serotonin transporter binding sites and the esters 9 were more potent than the corresponding nitriles 8. The 3,4-dichloro derivative 9e was the most potent ligand of the series for dopamine transporter binding sites while the 2-naphthyl derivative 9g exhibited the most potent binding affinity and was highly selective for serotonin transporter binding sites.  相似文献   

7.
Jones S  Howl J 《Regulatory peptides》2004,121(1-3):121-128
The formation of an amphipathic helix is a major determinant of the biological activity of the tetradecapeptide mastoparan (MP). To address the functional significance of lysyl residues at positions 4, 11 and 12 of MP, we synthesised five novel analogues using sequence permutation and arginine-substitution to delocalise cationic charge. Comparative bioassays determined cytotoxicity, beta-hexoseaminidase secretory efficacy and peptide-activated extracellular receptor-stimulated kinase (ERK)1/2 phosphorylation. The monosubstitution of individual lysine residues with arginine produced differential changes to the indices of cytotoxicity and secretion indicating that these conservative substitutions are compatible with membrane translocation and the selective binding and activation of intracellular proteins. More profound changes to the predicted hydrophilic face of MP, resulting from the relocation or substitution of additional lysyl residues, enhanced both the cytotoxicity and secretory efficacy of novel peptides. Significantly, the more amphipathic peptide [Lys5, Lys8, Aib10]MP was identified to be both the most cytotoxic and the most potent secretagogue of all the peptides compared here. Charge delocalisation within the hydrophilic face of MP analogues was also compatible with peptide-induced activation of ERK1/2 phosphorylation. Our data indicate that charge delocalisation is a suitable strategy to engineer more potent analogues of MP that differentially target intracellular proteins.  相似文献   

8.
Tetrahymena thermophila is a model organism for molecular and cellular biology. Previous studies from our group showed that Tetrahymena contains major components of the endocannabinoid system, such as various endocannabinoids and FAAH. In mammalian cells the endocannabinoid 2-arachidonoylglycerol is inactivated mainly by MAGL. In this study we showed that 2-arachidonoylglycerol and 2-oleoylglycerol are hydrolyzed by the combined actions of MAGL and FAAH. MAGL-like activity was examined in the presence of FAAH specific inhibitors, URB597 or AM374 and showed optimum pH of 8-9, apparent K(M) of 14.1μM and V(max) of 5.8nmol/min×mg. The enzyme was present in membrane bound and cytosolic isoforms; molecular mass was determined at ~45 and ~40kDa. MAGL and FAAH could also inactivate endogenous signaling lipids, which might play an important role in Tetrahymena as suggested in mammals. Tetrahymena could be used as a model system for testing drugs targeting enzymes of the endocannabinoid system.  相似文献   

9.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to be an intracellular Ca2+-releasing messenger in a wide variety of systems to date. Its actions are both potent and highly specific despite differing structurally from the endogenous cellular co-factor and its precursor, NADP, only in the substitution of a hydroxyl for the amine group at the 3' position of the pyridine ring. This substitution allows NAADP to bind to a membrane-localized binding site in sea urchin egg homogenates with an IC50 at least 1000-fold greater than that of NADP as measured by competition radioligand binding assays. This suggests that the NAADP receptor protein must include certain features in the NAADP binding site that regulate this specificity. In order to investigate this interaction, we synthesised a series of NAADP analogues differing from NAADP at the 3' position of the pyridine ring that included both simple carboxylic acid analogues as well as a series of chemical isosters. We then investigated both their affinity for the NAADP binding site in sea urchin egg homogenates and their ability to activate the NAADP sensitive Ca2+ channel. We hereby show that a negative charge at the 3' position is an important determinant of affinity but the protein displays a large tolerance for the size of the group. Furthermore, the protein does not easily accommodate multiple charged groups or large uncharged groups.  相似文献   

10.
J. Kim 《Molecular simulation》2013,39(14):1131-1138
The pharmacophore-guided docking study of aryl diketoacid (ADK) analogues revealed two distinctive hydrophobic binding sites (a pocket and a groove) around the UTP-binding site of hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). Interestingly, the hydrophobic binding sites have appropriate shape and size to specifically substituted aromatic rings, which suggests the specific role of substituents on the aromatic ring in determining the binding affinity of the ADK analogue to the active site of the target enzyme. Binding mode analysis of ADK analogues with potent antiviral activity shows highly substituted aromatic rings map well onto the hydrophobic binding sites. For less active compounds, their lack of aromatic substitution and thereby insufficient size can be primarily ascribed to their inability to bind to the hydrophobic binding site. The characteristic binding mode of ADK analogues proposed in this study provides a useful tool in designing a structure–activity relationship study of novel ADK analogues based on various aromatic substituents.  相似文献   

11.
Human calcitonin receptor (hCTR) subtypes contain three or four potential Asn-linked glycosylation sites in their extracellular amino termini. The role of glycosylation in hCTR function has not been identified, but it has been suggested that inhibition of glycosylation does not affect binding or signaling. To determine the role of glycosylation in hCTR biology, we studied the effects of inhibition of glycosylation and of substitution of Asn residues that are potential glycosylation sites. Native and mutated hCTRs were studied after transient expression in monkey kidney COS-1 cells. Tunicamycin, administered as part of a treatment protocol that inhibited glycosylation of all expressed receptors, decreased salmon calcitonin (sCT) binding affinities and signaling potencies at hCTRs with three or four potential glycosylation sites. In hCTR3, which contains three potential glycosylation sites at positions 26, 78, and 83, site-specific substitution of Asn-26 by Ala had no effect on sCT binding affinity or potency, whereas substitution of Asn-78 or Asn-83 lowered sCT affinity and potency. A mutant hCTR3 in which all three Asn residues were substituted with Ala exhibited no high-affinity sCT binding and potencies of several calcitonin analogues that were more than 100-fold lower than that of native hCTR3. Our data show that glycosylation is important for high-affinity binding and potency of calcitonin analogues at hCTRs.  相似文献   

12.
In optimal cases, bivalent ligands can bind with exceptionally high affinity to their protein targets. However, designing optimised linkers, that orient the two binding groups perfectly, is challenging, and yet crucial in both fragment-based ligand design and in the discovery of bisubstrate enzyme inhibitors. To further our understanding of linker design, a series of novel bivalent S-adenosylmethionine (SAM) analogues were designed with the aim of interacting with the MetJ dimer in a bivalent sense (1:1 ligand/MetJ dimer). A range of ligands was synthesised and analyzed for ability to promote binding of the Escherichia coli methionine repressor, MetJ, to its operator DNA. Binding of bivalent SAM analogues to the MetJ homodimer in the presence of operator DNA was evaluated by fluorescence anisotropy and the effect of linker length and structure was investigated. The most effective bivalent ligand identified had a flexible linker, and promoted the DNA-protein interaction at 21-times lower concentration than the corresponding monovalent control compound.  相似文献   

13.
The capacity of iodotyrosines and iodothyronine analogues to displace tracer[125I] L-3,5,3′ triiodothyronine from specific nuclear binding sites in rat liver and heart was related to the displacement capacity of nonradioactive triiodothyronine. Iodotyrosines and L-3,3′,5′ triiodothyronine (“reverse T3”) were devoid of displacement activity. Analogues with 3,5 substitution in the “inner” ring and single “bulk” substitution in the 3′ position in the phenolic ring exhibited the strongest displacement activity. When the distribution, fractional removal rates and metabolic conversion of the analogues were taken into account, displacement activity appeared to correlate well with the reported thyromimetic activity. These results support the biologic relevance of the nuclear sites.  相似文献   

14.
This communication describes the synthesis and in vitro evaluation of a novel and potent series of phthalazine phosphodiesterase type (IV) (PDE4) inhibitors. The interaction with two distinct polar binding sites allowed us to eliminate the cyclopentyloxy substitution from rolipram-like analogues.  相似文献   

15.
A series of analogues of the potent peptide deformylase (PDF) inhibitor BB-3497 containing alternative metal binding groups was synthesised. Enzyme inhibition and antibacterial activity data for these compounds revealed that the bidentate hydroxamic acid and N-formyl hydroxylamine structural motifs represent the optimum chelating groups on the pseudopeptidic BB-3497 backbone.  相似文献   

16.
17.
The synthesis and biological activity of novel CD-ring modified analogues of 22-oxa-1alpha,25-dihydroxyvitamin D(3), lacking the D-ring and featuring a connection between C-18 and C-21 (spiro[5.5]undecane CF-ring analogues), is described. The central ring system is conveniently synthesised from an achiral intermediate. The analogues have marginal binding affinity for the nVDR and possess low to moderate genomic activity.  相似文献   

18.
A series of analogues of the naturally occurring antibiotic thiolactomycin (TLM) have been synthesised and evaluated for their ability to inhibit the growth of the malaria parasite, Plasmodium falciparum. Thiolactomycin is an inhibitor of Type II fatty acid synthase which is found in plants and most prokaryotes, but not an inhibitor of Type I fatty acid synthase in mammals. A number of the analogues showed inhibition equal to or greater than TLM. The introduction of hydrophobic alkyl groups at the C3 and C5 positions of the thiolactone ring lead to increased inhibition, the best showing a fourteenfold increase in activity over TLM. In addition, some of the analogues showed activity when assayed against the parasitic protozoa, Trypanosoma cruzi and Trypanosoma brucei.  相似文献   

19.
A series of 5-C-substituted 20(S)-camptothecin analogues were synthesised and evaluated their in vitro anti-cancer activity. Several of these analogues have showed excellent activity against human tumor cell lines.  相似文献   

20.
Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号