共查询到20条相似文献,搜索用时 0 毫秒
1.
Moar W Roush R Shelton A Ferré J MacIntosh S Leonard BR Abel C 《Nature biotechnology》2008,26(10):1072-4; author reply 1074-6
2.
遗传转化标记是将遗传修饰昆虫从野生型种群中分辨出来的根据,遗传转化昆虫的鉴定、转化品系的维持及其遗传稳定性的监测都依赖于可靠的标记系统,发展易于应用和监测的转化标记能够极大地促进害虫遗传防治的相关研究。用于遗传修饰昆虫的转化标记主要有昆虫眼睛颜色标记基因、抗药性标记基因和荧光蛋白标记基因等。非果蝇类昆虫首个遗传转化品系的鉴定是通过眼睛颜色突变而实现,但大多数昆虫物种没有可用的突变体或缺少相应基因的信息,从而限制了眼睛颜色标记的应用。抗药性基因标记虽然能够通过对转化昆虫进行集体选择而大幅度提高筛选转化体的效率,但由于其鉴定的准确性不高且存在安全性问题,未得到广泛应用。荧光蛋白标记基因的发展则显著拓宽了能够转化的昆虫种类。从水母分离的绿色荧光蛋白(GFP)经突变方法获得了多种不同荧光性质的突变体,经人为修饰后与适宜的强启动子构成转化标记载体,能够有效鉴定更多昆虫物种的遗传转化个体,其中应用较多的是增强型绿色荧光蛋白(EGFP)。此外,从珊瑚属海葵中分离得到的红色DsRed标记基因提供了多样化的红色荧光蛋白选择,在某些生物中DsRed与GFP联合应用的表现明显优于GFP突变体,所以其应用前景也非常广泛。本文着重从眼睛颜色、抗药性和荧光蛋白等3个方面阐述了标记基因的发展历史与现状,并对其今后的发展方向进行了展望。 相似文献
3.
Genetically modified crops are effective pest management tools for worldwide growers. However, there is a concern that pests may develop resistance to Bt-toxins produced by genetically modified Bt-plants. We study the impact of the Bt-resistant pests on Bt-crops. Furthermore, the dynamics of the Bt-plant-Bt-susceptible insects-Bt-resistant insects system is analysed and it is shown that throughout the insect reproduction period the plant biomass dynamics resulting from invasion of Bt-resistant insects is non-unique. Namely, the chaotic attractor and the limit cycle, which are responsible for the plant and insect biomass dynamics, are shown to coexist. As a result, the Bt-plant-Bt-resistant insect system can manifest either chaotic or regular oscillations of plant and insect biomass depending on spatial patterns resulting from invasion of Bt resistant insects into the Bt plant-Bt susceptible insect system. We show that the non-uniqueness of the system dynamics under unfavorable environmental conditions, such as in the so-called zones of risky agriculture in many developing countries and industrialized countries, can lead to essential decrease in the plant biomass. 相似文献
4.
5.
6.
7.
8.
Many roads to resistance: how invertebrates adapt to Bt toxins 总被引:13,自引:0,他引:13
Griffitts JS Aroian RV 《BioEssays : news and reviews in molecular, cellular and developmental biology》2005,27(6):614-624
The Cry family of Bacillus thuringiensis insecticidal and nematicidal proteins constitutes a valuable source of environmentally benign compounds for the control of insect pests and disease agents. An understanding of Cry toxin resistance at a molecular level will be critical to the long-term utility of this technology; it may also shed light on basic mechanisms used by other bacterial toxins that target specific organisms or cell types. Selection and cross-resistance studies have confirmed that genetic adaptation can elicit varying patterns of Cry toxin resistance, which has been associated with deficient protoxin activation by host proteases, and defective Cry toxin-binding cell surface molecules, such as cadherins, aminopeptidases and glycolipids. Recent work also suggests Cry toxin resistance may be induced in invertebrates as an active immune response. The use of model invertebrates, such as Caenorhabditis elegans and Drosophila melanogaster, as well as advances in insect genomics, are likely to accelerate efforts to clone Cry toxin resistance genes and come to a detailed and broad understanding of Cry toxin resistance. 相似文献
9.
Modeling resistance to genetic control of insects 总被引:2,自引:0,他引:2
The sterile insect technique is an area-wide pest control method that reduces pest populations by releasing mass-reared sterile insects which compete for mates with wild insects. Modern molecular tools have created possibilities for improving and extending the sterile insect technique. As with any new insect control method, questions arise about potential resistance. Genetic RIDL®1 (Release of Insects carrying a Dominant Lethal) technology is a proposed modification of the technique, releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation. Hypothetical resistance to the lethal mechanism is a potential threat to RIDL strategies' effectiveness. Using population genetic and population dynamic models, we assess the circumstances under which monogenic biochemically based resistance could have a significant impact on the effectiveness of releases for population control. We assume that released insects would be homozygous susceptible to the lethal genetic construct and therefore releases would have a built-in element of resistance dilution. We find that this effect could prevent or limit the spread of resistance to RIDL constructs; the outcomes are subject to competing selective forces deriving from the fitness properties of resistance and the release ratio. Resistance that is spreading and capable of having a significant detrimental impact on population reduction is identifiable, signaling in advance a need for mitigating action. 相似文献
10.
Induced resistance in rice against insects 总被引:1,自引:0,他引:1
Vaccinations are the mainstay of western preventive medicine, and they have been used to protect some crops against disease and insect pests. We consider rice as a model for protection using induced resistance since it is one of the most important staple crops and there have been significant new developments in: cross-resistance among rice insects, chemical pathways involved in induced resistance, sequencing the rice genome and expression of genes conferring resistance against rice insect pests. Insect attack has been found to cause lesions that kill planthopper eggs and early stages of gall midges. Damaged plants released volatiles that made them less likely to be chosen by planthoppers and more attractive to parasitoids. Chemical elicitors have been developed for dicotyledonous plants and these can induce resistance in rice, although rice does not fit models developed to explain signalling in dicots. For example, salicylic acid did not increase in rice after infection by pathogens and did not appear to be the mobile signal for induced resistance against pathogens although it was involved in induced responses to phloem-feeding insects. Jasmonic acid acted as a signal in some induced responses to pathogens as well as chewing insects. Many of the genes associated with induced resistance in rice have recently been mapped, and techniques are being developed to incorporate them into the genome of cultivated varieties. Attempts to control insect pests of rice will affect interactions with pathogens, predators and parasites, and other organisms in this agroecosystem. 相似文献
11.
The occurrence of polygyny and polyandry in social insects has long puzzled evolutionary biologists. If cooperation requires genetic relatedness, how do we explain the occurrence and maintenance of mechanisms that reduce the degree of relatedness among colony members? A much-discussed hypothesis states that genetically diverse colonies are more resistant to parasitism than homogenous colonies because genetic diversity reduces the spread of a disease within a colony. However, as we will argue in this note, a necessary condition for the parasite hypothesis is that genetically heterogeneous colonies have a larger suite of parasites that are capable of infecting them. This implicit relationship is important because it implies that even if the cost per infection is reduced, this may not be sufficient to offset the increased rate of acquiring infections. The advantages of genetic heterogeneity as a defense against parasites thus may not be as big as commonly thought. 相似文献
12.
13.
1 引言 苏云金杆菌(Bacillus thuringiensis 简称Bt)是目前世界上产量最大、应用最为成功的微生物杀虫剂,除了已筛选出多种Bt菌株直接发酵培养外,还培育出转基因工程菌及转基因植物,使Bt的使用范围大为扩大. Bt在形成芽孢时产生的伴孢晶体是Bt杀虫活性的主要来源,它可能由几种晶体蛋白即δ-内毒素组成,包括Cry和Cyt两大类.一般认为,δ-内毒素的作用过程要经溶解、酶解活化、与受体结合、插入和孔洞或离子通道形成等五个环节[1],涉及到多种毒素和作用位点,单一因素的改变对其敏感性影响不大,自50年代到80年代初Bt应用的30多年里,均未有昆虫对之产生抗性的报道,以至于一些研究者曾过分乐观地认为昆虫对Bt 不会产生抗性.进入80年代后,情况发生了急剧变化,相继发现五带淡色库蚊(Culex qu inquefasciatusg)、印度谷螟(Plodia interpunctella)等多种昆虫对Bt产生了抗体[2],同时在田间也发现世界性蔬菜害虫小菜蛾(Plutella xylostella) 对Bt产生了抗生[3-4],世界各国相继开展了昆虫对Bt产生抗性的条件和机制的研究,以期在昆虫还未普遍对Bt产生抗性之前,制定出相应的防治策略,这对于Bt制剂,尤其是转Bt工程菌和转Bt植物的推广使用,具有十分重要的意义. 相似文献
14.
1 引言苏云金杆菌 (Bacillusthuringiensis简称Bt)是目前世界上产量最大、应用最为成功的微生物杀虫剂 ,除了已筛选出多种Bt菌株直接发酵培养外 ,还培育出转基因工程菌及转基因植物 ,使Bt的使用范围大为扩大。Bt在形成芽孢时产生的伴孢晶体是Bt杀虫活性的主要来源 ,它可能由几种晶体蛋白即δ -内毒素组成 ,包括Cry和Cyt两大类。一般认为 ,δ -内毒素的作用过程要经溶解、酶解活化、与受体结合、插入和孔洞或离子通道形成等五个环节[1] ,涉及到多种毒素和作用位点 ,单一因素的改变对其敏感性影响不大 … 相似文献
15.
Relevance of Bt toxin interaction studies for environmental risk assessment of genetically modified crops 下载免费PDF全文
Adinda De Schrijver Patrick De Clercq Ruud A. de Maagd Kees van Frankenhuyzen 《Plant biotechnology journal》2015,13(9):1221-1223
In recent years, different Bacillus thuringiensis (Bt) toxin‐encoding genes have been combined or ‘stacked’ in genetically modified (GM) crops. Synergism between Bt proteins may occur and thereby increase the impact of the stacked GM event on nontarget invertebrates compared to plants expressing a single Bt gene. On the basis of bioassay data available for Bt toxins alone or in combination, we argue that the current knowledge of Bt protein interactions is of limited relevance in environmental risk assessment (ERA). 相似文献
16.
Xingyun Wang Qingsong Liu Michael Meissle Yufa Peng Kongming Wu Jörg Romeis Yunhe Li 《Plant biotechnology journal》2018,16(10):1748-1755
Genetically engineered (GE) rice lines expressing Lepidoptera‐active insecticidal cry genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China. Field surveys indicated that Bt rice harbours fewer rice planthoppers than non‐Bt rice although planthoppers are not sensitive to the produced Bt Cry proteins. The mechanisms underlying this phenomenon remain unknown. Here, we show that the low numbers of planthoppers on Bt rice are associated with reduced caterpillar damage. In laboratory and field‐cage experiments, the rice planthopper Nilapavata lugens had no feeding preference for undamaged Bt or non‐Bt plants but exhibited a strong preference for caterpillar‐damaged plants whether Bt or non‐Bt. Under open‐field conditions, rice planthoppers were more abundant on caterpillar‐damaged non‐Bt rice than on neighbouring healthy Bt rice. GC–MS analyses showed that caterpillar damage induced the release of rice plant volatiles known to be attractive to planthoppers, and metabolome analyses revealed increased amino acid contents and reduced sterol contents known to benefit planthopper development. That Lepidoptera‐resistant Bt rice is less attractive to this important nontarget pest in the field is therefore a first example of ecological resistance of Bt plants to nontarget pests. Our findings suggest that non‐Bt rice refuges established for delaying the development of Bt resistance may also act as a trap crop for N. lugens and possibly other planthoppers. 相似文献
17.
Unclear or misclassified genetic background of laboratory rodents or a lack of strain awareness causes a number of difficulties in performing or reproducing scientific experiments. Until now, genetic differentiation between strains and substrains of inbred mice has been a challenge. We have developed a screening method for analyzing inbred strains regarding their genetic background. It is based on 240 highly informative short tandem repeat (STR) markers covering the 19 autosomes as well as X and Y chromosomes. Combination of analysis results for presence of known C57BL/6 substrain-specific mutations together with autosomal STR markers and the Y-chromosomal STR-haplotype provides a comprehensive snapshot of the genetic background of mice. In this study, the genetic background of 72 mouse lines obtained from 18 scientific institutions in Germany and Austria was determined. By analyzing only 3 individuals per genetically modified line it was possible to detect mixed genetic backgrounds frequently. In several lines presence of a mispairing Y chromosome was detected. At least every second genetically modified line displayed a mixed genetic background which could lead to unexpected and non-reproducible results, irrespective of the investigated gene of interest. 相似文献
18.
JANET HEMINGWAY 《Medical and veterinary entomology》1995,9(4):423-426
tofenprox is a non-ester pyrethroid insecticide with comparable toxicity and a similar mode of action to other pyrethroids. Cross-resistance studies on mosquitoes showed no effect of carboxylesterase, elevated esterase, altered acetylcholinesterase or glutathione S -transferase-based resistance mechanisms on etofenprox toxicity, when compared to standard susceptible strains of Anopheles and Culex . Cross-resistance to etofenprox occurred in a pyrethroid-resistant strain of Culex quinquefasciatus with both oxidase and 'kdr'-like resistance mechanisms.
Dose–response data for susceptible mosquito strains suggest that, in standard W.H.O. susceptibility tests of adult mosquitoes, appropriate discriminating concentrations of etofenprox for detection of resistance would be 0.1% for Culex and 0.25% for Anopheles . 相似文献
Dose–response data for susceptible mosquito strains suggest that, in standard W.H.O. susceptibility tests of adult mosquitoes, appropriate discriminating concentrations of etofenprox for detection of resistance would be 0.1% for Culex and 0.25% for Anopheles . 相似文献
19.
Carlos Muñóz-Garay Liliana Pardo-López Ivan Arenas Rosana Sánchez-López Andreas Holzenburg Christos G. Savva Alejandra Bravo 《生物化学与生物物理学报:生物膜》2009,1788(10):2229-2237
Bacillus thuringiensis Cry toxins are used in the control of insect pests. They are pore-forming toxins with a complex mechanism that involves the sequential interaction with receptors. They are produced as protoxins, which are activated by midgut proteases. Activated toxin binds to cadherin receptor, inducing an extra cleavage including helix α-1, facilitating the formation of a pre-pore oligomer. The toxin oligomer binds to secondary receptors such as aminopeptidase and inserts into lipid rafts forming pores and causing larval death. The primary threat to efficacy of Bt-toxins is the evolution of insect resistance. Engineered Cry1AMod toxins, devoid of helix α-1, could be used for the control of resistance in lepidopterans by bypassing the altered cadherin receptor, killing resistant insects affected in this receptor. Here we analyzed the mechanism of action of Cry1AbMod. We found that alkaline pH and the presence of membrane lipids facilitates the oligomerization of Cry1AbMod. In addition, tryptophan fluorescence emission spectra, ELISA binding to pure aminopeptidase receptor, calcein release assay and analysis of ionic-conductance in planar lipid bilayers, indicated that the secondary steps in mode of action that take place after interaction with cadherin receptor such as oligomerization, receptor binding and pore formation are similar in the Cry1AbMod and in the wild type Cry1Ab. Finally, the membrane-associated structure of Cry1AbMod oligomer was analyzed by electron crystallography showing that it forms a complex with a trimeric organization. 相似文献
20.
Aims Many resistance genes against fungal pathogens show costs of resistance. Genetically modified (GM) plants that differ in only one or a few resistance genes from control plants present ideal systems for measuring these costs in the absence of pathogens.Methods To assess the ecological relevance of costs of pathogen resistance, we grew individual plants of four transgenic spring wheat lines in a field trial with three pathogen levels and varied the genetic diversity of the crop.Important findings We found that two lines with a Pm3b transgene were more resistant to powdery mildew than their sister lines of the variety Bobwhite, whereas lines with chitinase (A9) or chitinase and glucanase (A13) transgenes were not more resistant than their mother variety Frisal. Nevertheless, in the absence of the pathogen, both the GM lines of Bobwhite as well as those of Frisal performed significantly worse than their controls, i.e. Pm3b #1 and Pm3b #2 had 39% or 53% and A9 and A13 had 14% or 23% lower yields. In the presence of the pathogen, all GM lines except Pm3b #2 could increase their yields and other fitness-related traits, reaching the performance levels of the control lines. Line Pm3b #2 seemed to have lost its phenotypic plasticity and had low performance in all environments. This may have been caused by very high transgene expression. No synergistic effects of mixing different GM lines with each other were detected. This might have been due to high transgene expression or the similarity between the lines regarding their resistance genes. We conclude that costs of resistance can be high for transgenic plants with constitutive transgene expression and that this can occur even in cases where the non-transgenic control lines are already relatively resistant, such as in our variety Frisal. Transgenic plants could only compete with conventional varieties in environments with high pathogen pressure. Furthermore, the large variability among the GM lines, which may be due to unpredictable transgene expression, suggests that case-by-case assessments are necessary to evaluate costs of resistance. 相似文献