首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Six water-soluble free-base porphyrin-Ru(II) conjugates, 1-3, and Zn(II) porphyrin-Ru(II) conjugates, 4-6, with different linkers between the hydrophobic porphyrin moiety and the hydrophilic Ru(II)-polypyridyl complex, have been synthesized. The linear and two-photon-induced photophysical properties of these conjugates were measured and evaluated for their potential application as dual in vitro imaging and photodynamic therapeutic (PDT) agents. Conjugates 1-3, with their high luminescence and singlet oxygen quantum yields, were selected for further study of their cellular uptake, subcellular localization, and cytotoxic and photocytotoxic (under linear and two-photon excitation) properties using HeLa cells. Conjugate 2, with its hydrophobic phenylethynyl linker, was shown to be highly promising for further development as a bifunctional probe for two-photon (NIR) induced PDT and in vitro imaging. Cellular uptake and subcellular localization properties were shown to be crucial to its PDT efficacy.  相似文献   

3.
Evaluation of monoclonal antibody (mAb) fragments (e.g., Fab', Fab, or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 ((211)At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the (211)At label, generally a meta- or para-[(211)At]astatobenzoyl conjugate, on mAb Fab' fragments can be dramatically improved by the use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled mAb Fab' conjugates appears to result in retention of radioactivity in the kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of an acid-cleavable hydrazone between the Fab' and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality, and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete poly(ethylene glycol) (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole, or methyl) to provide varying acid sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated ((125)I or (131)I), then conjugated with an anti-PSMA Fab' (107-1A4 Fab'). Biodistributions of the five radioiodinated Fab' conjugates were obtained in nude mice at 1, 4, and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab' through a noncleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver, and spleen that were similar to those obtained with directly radioiodinated Fab' (i.e., no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate substituent on the hydrazone was chosen for study with (211)At. That reagent was conjugated with 107-1A4 Fab', then labeled (separately) with (125)I and (211)At. The radiolabeled Fab' conjugates were coinjected into nude mice bearing LNCaP human tumor xenografts, and biodistribution data were obtained at 1, 4, and 24 h pi. Tumor targeting was achieved with both (125)I- and (211)At-labeled Fab', but the (211)At-labeled Fab' reached a higher concentration (25.56 ± 11.20 vs 11.97 ± 1.31%ID/g). Surprisingly, while the (125)I-labeled Fab' was cleared from kidney similar to earlier studies, the (211)At-labeled Fab'was not (i.e., kidney conc. for (125)I vs (211)At; 4 h, 13.14 ± 2.03 ID/g vs 42.28 ± 16.38%D/g; 24 h, 4.23 ± 1.57 ID/g vs 39.52 ± 15.87%ID/g). Since the Fab' conjugate is identical in both cases except for the radionuclide, it seems likely that the difference in tissue clearance seen is due to an effect that (211)At has on either the hydrazone cleavage or on the retention of a metabolite. Results from other studies in our laboratory suggest that the latter case is most likely. The hydrazone linkers tested do not provide the tissue clearance sought for (211)At, so additional hydrazones linkers will be evaluated. However, the results support the use of hydrazone linkers when Fab' conjugated with closo-decaborate(2-) reagents are radioiodinated.  相似文献   

4.
The syntheses and protein linking properties of succinimidyl 4-hydrazinobenzoate hydrochloride (SHBH) and succinimidyl 6-hydrazinonicotinate hydrochloride (SHNH), two new heterobifunctional linkers which lead to hydrazino-modified proteins, are described. SHBH-modified proteins are unstable due to the presence of the phenylhydrazine moiety. This problem was overcome by synthesizing the hydrazinopyridine analogue SHNH, and the conjugates derived from this linker are stable. Tc(V) oxo precursors readily add to hydrazinopyridine-modified proteins to yield the desired 99mTc-radiolabeled protein. 99mTc-hydrazinopyridine-polyclonal IgG conjugates are useful agents for the imaging of focal sites of infection.  相似文献   

5.
Optical imaging has attracted a great attention for studying molecular recognitions because minute fluorescent tracers can be detected in homogeneous and heterogeneous media with existing laboratory instruments. In our preliminary study, a clinically relevant photosensitizer (HPPH, a chlorophyll-a analog) was linked with a cyanine dye (with required photophysical characteristics but limited tumor selectivity), and the resulting conjugate was found to be an efficient tumor imaging (fluorescence imaging) and photosensitizing agent. Compared to HPPH, the presence of the cyanine dye moiety in the conjugate produced a significantly higher uptake in tumor than skin. At a therapeutic/imaging dose, the conjugate did not show any significant skin phototoxicity, a major drawback associated with most of the porphyrin-based photosensitizers. These results suggest that tumor-avid porphyrin-based compounds can be used as "vehicles" to deliver the desired fluorescent agent(s) to tumor. The development of tumor imaging or improved photodynamic therapy agent(s) by itself represents an important step, but a dual function agent (fluorescence imaging and photodynamic therapy) provides the potential for tumor detection and targeted photodynamic therapy, combining two modalities into a single cost-effective "see and treat" approach.  相似文献   

6.
The use of antibody molecules in immunoassay, molecular targeting, or detection techniques encompasses a broad variety of applications affecting nearly every field of medical science. In cancer therapy, monoclonal antibodies (mAb) have been used as vehicles to deliver radionuclides, toxins, or drugs to the target cancer cells. New conjugation methods are most needed to conjugate a wide variety of targeting small molecules and peptidomimatic compounds. Here, we exploited a keto-oxime method for conjugation of protease susceptible linkers to an antibody. This modified method involves two steps: (i) introduction of methyl ketone linkers (referred to as linker moiety) to the primary amines present in the antibody and (ii) conjugation of ketone linkers to aminoxy functional group present in the conjugated moiety (referred to as functional moiety). We have optimized this conjugation method and shown that approximately 10 functional moieties can be conjugated to antibody. Conjugation was verified by MALDI-TOF MS and Western blot analysis. The acidic pH conditions used in this method did not change the immune reactivity of the Ab. In addition, in vitro protease susceptibility assay was performed to validate this method for prodrug release assay as well as to remove excess radioimmune conjugates from circulation. This orthogonal method is compatible with peptides containing a thiol, amino, or carboxyl groups in the conjugation moiety.  相似文献   

7.
Immunoconjugates of monoclonal antibody BR96 and Doxorubicin have been prepared using a novel series of branched hydrazone linkers. Since each linker bound to the mAb carries two DOX molecules, the DOX/mAb molar ratios of these conjugates were approximately 16, twice that of those previously prepared with single-chain hydrazone linkers. The conjugates were stable at a physiological pH of 7, but released DOX rapidly at lysosomal pH 5. The branched series of BR96 conjugates demonstrated antigen-specific cytotoxicity, and were more potent in vitro than the single-chain conjugate on both a DOX (4-14-fold) and mAb (7-23-fold) basis. The results suggest that, by using the branched linker methodology, it is possible to significantly reduce the amount of mAb required to achieve antigen-specific cytotoxic activity. In this paper, the synthesis and in vitro biology of branched chain immunoconjugates are described.  相似文献   

8.
The reactive thiol in cysteine is used for coupling maleimide linkers in the generation of antibody conjugates. To assess the impact of the conjugation site, we engineered cysteines into a therapeutic HER2/neu antibody at three sites differing in solvent accessibility and local charge. The highly solvent-accessible site rapidly lost conjugated thiol-reactive linkers in plasma owing to maleimide exchange with reactive thiols in albumin, free cysteine or glutathione. In contrast, a partially accessible site with a positively charged environment promoted hydrolysis of the succinimide ring in the linker, thereby preventing this exchange reaction. The site with partial solvent-accessibility and neutral charge displayed both properties. In a mouse mammary tumor model, the stability and therapeutic activity of the antibody conjugate were affected positively by succinimide ring hydrolysis and negatively by maleimide exchange with thiol-reactive constituents in plasma. Thus, the chemical and structural dynamics of the conjugation site can influence antibody conjugate performance by modulating the stability of the antibody-linker interface.  相似文献   

9.
Luedtke NW  Liu Q  Tor Y 《Biochemistry》2003,42(39):11391-11403
Semisynthetic aminoglycoside derivatives may provide a means to selectively target viral RNA sites, including the HIV-1 Rev response element (RRE). The design, synthesis, and evaluation of derivatives based upon neomycin B, kanamycin A, and tobramycin conjugates of 9-aminoacridine are presented. To evaluate the importance of the acridine moiety, a series of dimeric aminoglycosides as well as unmodified "monomeric" aminoglycosides have also been evaluated for their nucleic acid affinity and specificity. Fluorescence-based binding assays that use ethidium bromide or Rev peptide displacement are used to quantify the affinities of these compounds to various nucleic acids, including the RRE, tRNA, and duplex DNA. All the modified aminoglycosides exhibit a high affinity for the Rev binding site on the RRE (K(d) 相似文献   

10.
We describe the in vitro and in vivo properties of monoclonal antibody (mAb)-drug conjugates consisting of the potent synthetic dolastatin 10 analogs auristatin E (AE) and monomethylauristatin E (MMAE), linked to the chimeric mAbs cBR96 (specific to Lewis Y on carcinomas) and cAC10 (specific to CD30 on hematological malignancies). The linkers used for conjugate formation included an acid-labile hydrazone and protease-sensitive dipeptides, leading to uniformly substituted conjugates that efficiently released active drug in the lysosomes of antigen-positive (Ag+) tumor cells. The peptide-linked mAb-valine-citrulline-MMAE and mAb-phenylalanine-lysine-MMAE conjugates were much more stable in buffers and plasma than the conjugates of mAb and the hydrazone of 5-benzoylvaleric acid-AE ester (AEVB). As a result, the mAb-Val-Cit-MMAE conjugates exhibited greater in vitro specificity and lower in vivo toxicity than corresponding hydrazone conjugates. In vivo studies demonstrated that the peptide-linked conjugates induced regressions and cures of established tumor xenografts with therapeutic indices as high as 60-fold. These conjugates illustrate the importance of linker technology, drug potency and conjugation methodology in developing safe and efficacious mAb-drug conjugates for cancer therapy.  相似文献   

11.
Wu Y  Mitchell J  Cook C  Main L 《Steroids》2002,67(7):565-572
A series of progesterone-4-ovalbumin (OVA) conjugates with different length linkers (4-, 11-, and 18-atoms long) were synthesized by successive aminocaproic acid homologation of 3-(pregn-4-ene-3,20-dione-4-yl)thiopropanoic acid (1) before conjugation to ovalbumin. The performance studies of these progesterone-4-ovalbumin conjugates showed that the effects of the length of linker on the antibody binding are dependent upon different immunoassay formats. In a rapid flow biosensor surface, on a BIAcore Surface Plasmon Resonance (SPR) instrument, antibody-binding capacities and response rate were dramatically increased for progesterone-4-ovalbumin conjugates when the length of the linker was incremented from 4 atoms to 11 or 18 atoms. Thus, highly sensitive SPR-based immunoassays for progesterone over a range of 0.1-50 ng ml(-1) were developed using biosensor surfaces immobilized with progesterone-ovalbumin conjugates having extended linkers. The SPR-based assays were fully competitive with conventional enzyme-linked immunosorbant assay (ELISA) but much more rapid and simple. However, there were little changes in antibody-binding performance using a conventional ELISA for the same conjugates. The progesterone-4-ovalbumin conjugate (1-OVA) had better antibody binding than its progesterone-7alpha-ovalbumin analog (2-OVA) in the SPR-based assay, but with a conventional ELISA there was no significant difference between these two isomeric conjugates.  相似文献   

12.
Insight into the metabolism of radiolabeled antibodies is important for the design of better radioimaging and therapy agents. To test the effect of linkers that can be cleaved in vivo, we introduced Ala-Leu-Ala-Leu between the antibody Lym-1 and an 111In-labeled benzyl-EDTA. For comparison, we studied a conjugate without the linker. Digestion of the two conjugates in vitro showed that the one with Ala-Leu-Ala-Leu was cleaved rapidly by the liver protease cathepsin B1 (T1/2 approximately 6 h). After 100 h of digestion, reversed-phase HPLC product analysis of the Ala-Leu-Ala-Leu conjugate showed that 48% of the total radioactivity had the same retention time as (p-aminobenzyl)-EDTA(In), and 37% of the total radioactivity had the same retention time as [p-(Ala-Leu-amido)benzyl]-EDTA(In). After 97 h of digestion, the conjugate without the linker had 79% of the radioactivity activity still attached to the protein. We also tested the two conjugates in mice. Ala-Leu-Ala-Leu had only a moderate effect on the whole body and liver clearance in vivo. The excretion of the radioactivity was about 6% per day with the linker and about 3% per day without the linker. HPLC analysis of the urine of a single mouse showed products similar to the in vitro study; 54% of the excreted radioactivity had the same retention time as (p-aminobenzyl)-EDTA(In), while 10% had the retention time of [p-(Ala-Leu-amido)benzyl]-EDTA(In).  相似文献   

13.
Two desferrioxamine B-ciprofloxacin conjugates with 'trimethyl-lock' based linkers that are designed to release the antibiotic after esterase or phosphatase-mediated hydrolysis were synthesized. The potential esterase-sensitive conjugate 13 displayed moderate to good antibacterial activities against selected ferrioxamine-utilizing bacteria, although the activities were lower than the parent drug ciprofloxacin. However, the potential phophatase-sensitive conjugate 23 was inactive against the same panel of organisms tested. These properties appeared to be related to the activating efficiency of the linker by the enzyme and to the outer membrane protein recognition of the chemically modified siderophore used in the conjugate.  相似文献   

14.
Molecular modelling based on X-ray structures of the antibiotic drug chloramphenicol bound in a bacterial ribosome has been used for design of chloramphenicol derivatives. Conjugates of the chloramphenicol amine through appropriate linkers to either a pyrene moiety or to a mono- or dinucleotide moiety were designed to improve binding to ribosomes by providing specific interactions in the peptidyl transferase site or to the P-loop in the ribosome. Specific binding of the conjugates were investigated by footprinting analysis using chemical modifications of accessible nucleotides in ribosomal RNA. The pyrene chloramphenicol conjugate shows enhanced binding to the chloramphenicol binding site compared to the native chloramphenicol, whereas the four nucleotide conjugates could not be shown to bind to the chloramphenicol binding site or to the P-loop.  相似文献   

15.
The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.  相似文献   

16.
A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH. In both in vitro (RIF tumor cells) and in vivo (mice bearing RIF tumors and rats bearing Ward Colon tumors) the conjugate produced significant increases in tumor conspicuity at 1.5 T and retained therapeutic efficacy following PDT. Also synthesized were a series of novel bifunctional agents containing two Gd(III) atoms per HPPH molecule that remained tumor-avid and PDT-active and yielded improved MR tumor conspicuity compared to their corresponding mono-Gd(III) analogues. Administered iv at a MR imaging dose of 10 micromol/kg, these conjugates produced severe skin phototoxicity. However, by replacing the hexyl group of the pyropheophorbide-a with a tri(ethylene glycol) monomethyl ether (PEG-methyl ether), these conjugates produced remarkable MR tumor enhancement at 8 h post-iv injection, significant tumoricidal activity (80% of mice were tumor-free on day 90), and reduced skin phototoxicity compared to their corresponding hexyl ether analogues. The poor water-solubility characteristic of these conjugates was resolved by incorporation into a liposomal formulation. This paper presents the synthesis of tumor-avid contrast enhancing agents for MR imaging and thus represents an important milestone toward improving cancer diagnosis and tumor characterization. More importantly, this paper describes a new family of bifunctional agents that combine two modalities into a single cost-effective "see and treat" approach, namely, a single agent that can be used for contrast agent-enhanced MR imaging followed by targeted photodynamic therapy.  相似文献   

17.
Bioorthogonal ‘click’ reactions have recently emerged as promising tools for chemistry and biological applications. By using a combination of two different ‘click’ reactions, ‘double-click’ strategies have been developed to attach multiple labels onto biomacromolecules. These strategies require multi-step modifications of the biomacromolecules that can lead to heterogeneity in the final conjugates. Herein, we report the synthesis and characterization of a set of three trifunctional linkers. The linkers having alkyne and cyclooctyne moieties that are capable of participating in sequential copper(I)-catalyzed and copper-free cycloaddition reactions with azides. We have also prepared a linker comprised of an alkyne and a 1,2,4,5-terazine moiety that allows for simultaneous cycloaddition reactions with azides and trans-cyclooctenes, respectively. These linkers can be attached to synthetic or biological macromolecules to create a platform capable of sequential or parallel ‘double-click’ labeling in biological systems. We show this potential using a generation 5 (G5) polyamidoamine (PAMAM) dendrimer in combination with the clickable linkers. The dendrimers were successfully modified with these linkers and we demonstrate both sequential and parallel ‘double-click’ labeling with fluorescent reporters. We anticipate that these linkers will have a variety of application including molecular imaging and monitoring of macromolecule interactions in biological systems.  相似文献   

18.
Abstract

The syntheses of pyrrole-oligonucleotide-peptide conjugates and pyrrole-oligonucleotide-biotin conjugates were described. The oligonucleotide moiety acted as an ?active linker? which allowed the easy purification and quantitation of the conjugates and in turn controlled the grafting. The peptide conjugates were immobilised on silicon array and their immunoreactivity was tested using biotinylated antibodies and a phycoerythrin-streptavidin staining. The biotin conjugate provided a fluorescence scale.  相似文献   

19.
Recent advances in tumor-targeting anticancer drug conjugates   总被引:7,自引:0,他引:7  
Traditional cancer chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be a killed by cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing severe undesirable side effects. Therefore, various drug delivery protocols and systems have been explored in the last three decades. Tumor cells overexpress many receptors and biomarkers, which can be used as targets to deliver cytotoxic agents into tumors. In general, a tumor-targeting drug delivery system consists of a tumor recognition moiety and a cytotoxic warhead connected directly or through a suitable linker to form a conjugate. The conjugate, which can be regarded as 'prodrug', should be systemically non-toxic. This means that the linker must be stable in circulation. Upon internalization into the cancer cell the conjugate should be readily cleaved to regenerate the active cytotoxic agent. Tumor-targeting conjugates bearing cytotoxic agents can be classified into several groups based on the type of cancer recognition moieties. This review describes recent advances in tumor-targeting drug conjugates including monoclonal antibodies, polyunsaturated fatty acids, folic acid, hyaluronic acid, and oligopeptides as tumor-targeting moieties.  相似文献   

20.
Synthesis of a novel class of compounds and their biophysical studies with TAR-RNA are presented. The synthesis of these compounds was achieved by conjugating neomycin, an aminoglycoside, with benzimidazoles modeled from a B-DNA minor groove binder, Hoechst 33258. The neomycin–benzimidazole conjugates have varying linkers that connect the benzimidazole and neomycin units. The linkers of varying length (5–23 atoms) in these conjugates contain one to three triazole units. The UV thermal denaturation experiments showed that the conjugates resulted in greater stabilization of the TAR-RNA than either neomycin or benzimidazole used in the synthesis of conjugates. These results were corroborated by the FID displacement and tat-TAR inhibition assays. The binding of ligands to the TAR-RNA is affected by the length and composition of the linker. Our results show that increasing the number of triazole groups and the linker length in these compounds have diminishing effect on the binding to TAR-RNA. Compounds that have shorter linker length and fewer triazole units in the linker displayed increased affinity towards the TAR RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号