首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complexes of Piwi proteins and Piwi-interacting RNAs (piRNAs) carry out the repression of transposable elements in animal gonads. The Piwi protein clade is represented in D. melanogaster by three members: Piwi, Aub and Ago3. Piwi protein functions in the nuclei of somatic and germinal ovarian cells, whereas Aub and Ago3 are cytoplasmic proteins of germinal cells. Aub and Ago3 interact with each other in the perinuclear nuage organelle to perform piRNA amplification via the ping-pong mechanism. Previously, derepression of several transposable elements as a result of mutations in the piRNA silencing system was shown. Here we quantify the increase in expression level of an enlarged number of retrotransposons due to the mutations in the piwi gene, nuage components coding aub, mael and spn-E genes and the RNA helicase armi gene mutation that impairs Piwi nuclear localization, but not the ping-pong cycle. We reveal that piwi, armi, aub, spn-E and mael genes participate together in the repression of several transposons (HMS-Beagle, Gate and HeT-A), whereas silencing of land G elements requires the same genes except piwi. We suggest that Armi has other functions besides the localizing of Piwi protein in the nuclei. Our data suggest also a role of cytoplasmic Aub, Spn-E and Mael nuage proteins in Piwi-mediated repression of Gate and HMS-Beagle transposons in the germline nuclei. As a whole, our results corroborate the idea that genome stabilization in the germline is realized by different silencing strategies specific for different transposable elements. At the same time, our data suggest the existence of yet unknown mechanisms of interplay between nuclear and cytoplasmic components of the piRNA machinery in the germline.  相似文献   

2.
Understanding the molecular mechanisms that influence transposable element target site preferences is a fundamental challenge in functional and evolutionary genomics. Large-scale transposon insertion projects provide excellent material to study target site preferences in the absence of confounding effects of post-insertion evolutionary change. Growing evidence from a wide variety of prokaryotes and eukaryotes indicates that DNA transposons recognize staggered-cut palindromic target site motifs (TSMs). Here, we use over 10 000 accurately mapped P-element insertions in the Drosophila melanogaster genome to test predictions of the staggered-cut palindromic target site model for DNA transposon insertion. We provide evidence that the P-element targets a 14-bp palindromic motif that can be identified at the primary sequence level, which predicts the local spacing, hotspots and strand orientation of P-element insertions. Intriguingly, we find that the although P-element destroys the complete 14-bp target site upon insertion, the terminal three nucleotides of the P-element inverted repeats complement and restore the original TSM, suggesting a mechanistic link between transposon target sites and their terminal inverted repeats. Finally, we discuss how the staggered-cut palindromic target site model can be used to assess the accuracy of genome mappings for annotated P-element insertions.  相似文献   

3.
Summary We have analyzed the behavior of a transposing element (TE) in Drosophila melanogaster. The TE carries the structural genes white (w a or w aR=white apricot reversed) and roughest (rst +), which corresponds to the bands 3C2-6 and a genetic distance of approximately 0.7 map units. Due to the large size, TE can often be visualized in the polytene chromosomes as extra bands at the site of the transposon. We have identified over 100 different transpositions, most of which are situated in the large autosomes; genetic and cytological information is presented for 41 of these positions. Excision of TE may occur once in 1,000 chromosomes, while insertion in a new position is more rare, about once in 10,000 animals or less. The structure of TE itself is variable: regions within it may be lost, genes located adjacent to the site of insertion may transpose with the TE (hitch-hiking genes) or the TE may be duplicated.Possible mechanisms for transposition of the TE and its relation to dispersed gene families are discussed. Paro et al. (1983) have studied the end segments of the TE and isolated so-called FB elements (FB-NOF), which are responsible for its ability to transpose.A careful analysis of the many insertion points for TE will result in a more accurate correlation between the genetical and cytological maps for the two large autosomes of Drosophila melanogaster.  相似文献   

4.
Transposons evolve rapidly and can mobilize and trigger genetic instability. Piwi-interacting RNAs (piRNAs) silence these genome pathogens, but it is unclear how the piRNA pathway adapts to invasion of new transposons. In Drosophila, piRNAs are encoded by heterochromatic clusters and maternally deposited in the embryo. Paternally inherited P element transposons thus escape silencing and trigger a hybrid sterility syndrome termed P-M hybrid dysgenesis. We show that P-M hybrid dysgenesis activates both P elements and resident transposons and disrupts the piRNA biogenesis machinery. As dysgenic hybrids age, however, fertility is restored, P elements are silenced, and P element piRNAs are produced de novo. In addition, the piRNA biogenesis machinery assembles, and resident elements are silenced. Significantly, resident transposons insert into piRNA clusters, and these new insertions are transmitted to progeny, produce novel piRNAs, and are associated with reduced transposition. P element invasion thus triggers heritable changes in genome structure that appear to enhance transposon silencing.  相似文献   

5.
Summary ADrosophila transposable element, the P element, containing the bacterial gene encoding -galactosi-dase is widely used to search for tissue-specific enhancers. Thislac-Z-containing P element (P-lacZ ry +) can be moved around the genome by a number of techniques. When it comes to lie close to a tissue-specific enhancer, blue staining results in particular tissues of the fly. Many different patterns of expression have already been obtained with the long-term aim of cloning the nearby genes that these enhancers normally regulate. Whilst analysing a set of flies containing theseP-lacZ inserts for sex-specific expression in the adult, a preference was noticed for insertion into regions of DNA generating expression of -galactosidase in the male gonad. Since the transposition events generating these flies occurred in the male germ-line, it seemed possible that there was preferential insertion of the element into DNA which was being transcribed. To test this, transpositions were generated of the sameP-lacZ ry + in both the male and female germ-lines. The results are compatible with the above hypothesis. This finding has important implications for the type of enhancers likely to be found by this method, and may also be relevant to those using P elements as mutagens in Drosophila and for the study of the mechanism of P transposition.  相似文献   

6.
Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.  相似文献   

7.
Summary An X chromosome in Drosophila melanogaster is described which is mutationally unstable. Mutational events were identified through phenotypic changes associated with a tandem duplication of the X chromosome in which the white locus is present in duplicate. The left segment of the tandem duplication was marked with the mutant w sp, the right segment with mutant w 17G. Some of the phenotypic changes were identified as deletions involving the w 17G marked segment of the duplication. Other phenotypic changes involved the left segment in which phenotypically w sp mutated to w. Experimental evidence is presented which attributes these latter mutations to insertions of foreign DNA into the w locus equivalent to the insertion mutations of E. coli.  相似文献   

8.
We have isolated four segments of Drosophila melanogaster DNA that hybridize to homologous initiator tRNAMet. Three of the cloned fragments contain initiator tRNA genes, each of which can be transcribed in vitro. The fourth clone, pPW568, contains an initiator tRNA pseudogene which is not transcribed in vitro by RNA polymerase III. The pseudogene is contained in a 1.15 kb DNA fragment. This fragment has the characteristics of dispersed repetitive DNA and hybridizes in situ to at least 30 sites in the Drosophila genome. The arrangement of the initiator tRNA genes we have isolated, is different to that of other Drosophila tRNA gene families. The initiator tRNA genes are not clustered nor intermingled with other tRNA genes. They occur as single copies within an approximately 415-bp repeat segment, which is separated from other initiator tRNA genes by a mean distance of 17 kb. In situ hybridization to polytene chromosomes localizes these genes to the 61D region of the Drosophila genome. Hybridization analysis of genomic DNA indicates the presence of 8-9 non-allelic initiator tRNA genes in Drosophila melanogaster.  相似文献   

9.
Germline transformation systems for nearly 20 insect species have been derived from transposable elements, allowing the development of transgenic insects for basic and applied studies. These systems use a defective nonautonomous vector that results in stable vector integrations after the disappearance of transiently provided transposase helper plasmid, which is essential to maintain true breeding lines and consistent transgene expression that would otherwise be lost after vector remobilization. The risk of remobilization by an unintended transposase source has so far not been a concern for laboratory studies, but the prospective use of millions of transgenic insects in biocontrol programs will likely increase the risk, therefore making this a critical issue for the ecological safety of field release programs. Here we describe an efficient method that deletes a terminal repeat sequence of a transposon vector after genomic integration. This procedure prevents transposase-mediated remobilization of the other terminal sequence and associated genes, ensuring their genomic stability.  相似文献   

10.
The Jonah genes: a new multigene family in Drosophila melanogaster   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
13.
Drosophila melanogaster U1 snRNA genes   总被引:6,自引:0,他引:6  
We have isolated and characterized a recombinant which contains a Drosophila melanogaster U1 small nuclear RNA (snRNA) gene colinear with the published snRNA sequence. Southern hybridizations of the fly genomic DNA, using as probe a plasmid containing only the coding region of the gene, shows that the fly contains at most three or four genes and very few related sequences for the small nuclear U1 RNA. These genes were localized by in situ hybridization at different chromosomal loci and show no spatial relationship to the U2 snRNA genes.  相似文献   

14.
15.
Mutagenesis by transposon-mediated imprecise excision is the most extensively used technique for mutagenesis in Drosophila. Although P-element is the most widely used transposon in Drosophila to generate deletion mutants, it is limited by the insertion coldspots in the genome where P-elements are rarely found. The piggyBac transposon was developed as an alternative mutagenic vector for mutagenesis of non-P-element targeted genes in Drosophila because the piggyBac transposon can more randomly integrate into the genome. Previous studies suggested that the piggyBac transposon always excises precisely from the insertion site without initiating a deletion or leaving behind an additional footprint. This unique characteristic of the piggyBac transposon facilitates reversible gene-transfer in several studies, such as the generation of induced pluripotent stem (iPS) cells from fibroblasts. However, it also raised a potential limitation of its utility in generating deletion mutants in Drosophila. In this study, we report multiple imprecise excisions of the piggyBac transposon at the sepiapterin reductase (SR) locus in Drosophila. Through imprecise excision of the piggyBac transposon inserted in the 5'-UTR of the SR gene, we generated a hypomorphic mutant allele of the SR gene which showed markedly decreased levels of SR expression. Our finding suggests that it is possible to generate deletion mutants by piggyBac transposon-mediated imprecise excision in Drosophila. However, it also suggests a limitation of piggyBac transposon-mediated reversible gene transfer for the generation of induced pluripotent stem (iPS) cells.  相似文献   

16.
A follow-up over 83 generations has been carried out, by the Southern blotting technique, of a Drosophila stock which is unstable in the location of Bari 1 elements. The persistent intrastock polymorphism detected is largely amenable to insertion/excision equilibria at 36 genomic sites that form a gradient in occupancy. In a closely related stock, Bari 1 elements are stable and exhibit a substantially different genomic distribution. These results suggest that in Drosophila preferential insertion sites may be defined with the contribution of host factors, although alternative interpretations are also possible. The relevance to the mechanism(s) that contains the potentially deleterious effects of transposition is discussed.  相似文献   

17.
The majority of genes of multicellular organisms encode proteins with functions that are not required for viability but contribute to important physiological functions such as behavior and reproduction. It is estimated that 75% of the genes of Drosophila melanogaster are nonessential. Here we report on a strategy used to establish a large collection of stocks that is suitable for the recovery of mutations in such genes. From approximately 72,000 F(3) cultures segregating for autosomes heavily treated with ethyl methanesulfonate (EMS), approximately 12,000 lines in which the treated second or third chromosome survived in homozygous condition were selected. The dose of EMS induced an estimated rate of 1.2-1.5 x 10(-3) mutations/gene and predicts five to six nonessential gene mutations per chromosome and seven to nine alleles per locus in the samples of 6000 second chromosomes and 6000 third chromosomes. Due to mosaic mutations induced in the initial exposure to the mutagen, many of the lines are segregating or are now fixed for lethal mutations on the mutagenized chromosome. The features of this collection, known as the Zuker collection, make it a valuable resource for forward and reverse genetic screens for mutations affecting a wide array of biological functions.  相似文献   

18.
Transfer RNA genes of Drosophila melanogaster.   总被引:2,自引:3,他引:2       下载免费PDF全文
Three recombinant plasmids containing randomly sheared genomic D. melanogaster tRNAs have been identified and characterized in detail. One of these, the plasmid 14C4, has a D. melanogaster (Dm) DNA segment of 18 kb, and has three tRNA2Arg and two tRNAAsN genes. The second plasmid, 38B10, has tRNAHis genes, while the third plasmid, 63H5, contains coding sequences for tRNA2Asp. The Dm DNA segments in each recombinant plasmid are derived from unique cytogenetic loci. 14C4 is from 84 F, 38B10 is from 48 F and 63H5 is from 70 A.  相似文献   

19.
The Y chromosome and other heterochromatic regions present special challenges for genome sequencing and for the annotation of genes. Here we describe two new genes (ARY and WDY) on the Drosophila melanogaster Y, bringing its number of known single-copy genes to 12. WDY may correspond to the fertility factor kl-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号