共查询到20条相似文献,搜索用时 0 毫秒
1.
New cationic lipids having an o-nitrobenzyl moiety as a photocleavable spacer between its hydrophilic and hydrophobic region were synthesized. To improve the efficiency of transfection with lipoplexes, after transfecting the cationic lipid aggregate/DNA complex, photoirradiation was performed. Photochemical decomposition of lipids would not only make the vector's membrane unstable to facilitate the fusion with endocytic vesicles, but also promote dissociation of cationic lipid-DNA complex, thus aiding the escape of DNA from the endocytic vesicles. Using a luciferase gene as a model, we show that UV irradiation of photoresponsive lipoplex-treated COS-1 cells induces a substantial increase in the efficiency of transfection. Herein, we show a novel photoresponsive gene delivery system. 相似文献
2.
We designed a novel type of cationic lipid, lipids with a cationic polar group in the polyamidoamine dendron, because these dendron-bearing lipids are expected to form complexes with plasmid DNA and achieve efficient transfection of cells by synergy of endosome buffering and membrane fusion with the endosome, both of which are useful for the promotion of the transfer of plasmid DNA from endosome to cytosol. Four kinds of lipids with polyamidoamine dendrons of first to fourth generations, DL-G1, DL-G2, DL-G3, and DL-G4, were synthesized. The lipid with a dendron of a higher generation exhibited greater ability to form lipoplexes with plasmid DNA, as estimated by agarose gel electrophoresis. While the DL-G1 lipoplex did not transfect CV1 cells, the lipoplexes containing the DL-G2, DL-G3, or DL-G4 could induce transfection of the cells, and their activity was elevated with increasing generation of the dendron. Addition of dioleoylphosphatidylethanolamine (DOPE), which is known to increase fusion ability of a lipid membrane, into the lipoplexes greatly enhanced their transfection activity. In addition, the comparison with DC-Chol-containing lipoplex, which is widely used as a nonviral vector, showed that the DL-G3-DOPE lipoplex exhibits more efficient transfections. These findings imply that these dendron-bearing lipids may form the basis for a novel family of cationic lipids for efficient gene delivery. 相似文献
3.
Boris G. Tenchov Li Wang Rumiana Koynova Robert C. MacDonald 《生物化学与生物物理学报:生物膜》2008,1778(10):2405-2412
Synthetic cationic lipids can be used as DNA carriers and are regarded to be the most promising non-viral gene carriers. For this investigation, six novel phosphatidylcholine (PC) cationic derivatives with various hydrophobic moieties were synthesized and their transfection efficiencies for human umbilical artery endothelial cells (HUAEC) were determined. Three compounds with relatively short, myristoleoyl or myristelaidoyl 14:1 chains exhibited very high activity, exceeding by ∼ 10 times that of the reference cationic derivative dioleoyl ethylPC (EDOPC). Noteworthy, cationic lipids with 14:1 hydrocarbon chains have not been tested as DNA carriers in transfection assays previously. The other three lipids, which contained oleoyl 18:1 and longer chains, exhibited moderate to weak transfection activity. Transfection efficiency was found to correlate strongly with the effect of the cationic lipids on the lamellar-to-inverted hexagonal, Lα → HII, phase conversion in dipalmitoleoyl phosphatidylethanolamine dispersions (DPoPE). X-ray diffraction on binary DPoPE/cationic lipid mixtures showed that the superior transfection agents eliminated the direct Lα → HII phase transition and promoted formation of an inverted cubic phase between the Lα and HII phases. In contrast, moderate and weak transfection agents retained the direct Lα → HII transition but shifted to higher temperatures than that of pure DPoPE, and induced cubic phase formation at a later stage. On the basis of current models of lipid membrane fusion, promotion of a cubic phase by the high-efficiency agents may be considered as an indication that their high transfection activity results from enhanced lipoplex fusion with cellular membranes. The distinct, well-expressed correlation established between transfection efficiency of a cationic lipid and the way it modulates nonlamellar phase formation of a membrane lipid could be useful as a criterion to assess the quality of lipid carriers and for rational design of new and superior nucleotide delivery agents. 相似文献
4.
Herein, employing a previously reported disulfide-linker strategy, we have designed and synthesized a novel cationic lipid 2 with a disulfide-linker and its non-disulfide control analog lipid 1. The relative efficacies of lipids 1 and 2 in transfecting CHO, COS-1 and MCF-7 cells were measured using both reporter gene and whole cell histochemical staining assays. In stark contrast to the expectation based on the disulfide-linker strategy, the control non-disulfide cationic lipid 1 showed phenomenally superior in vitro transfection efficacies to its essentially transfection incompetent disulfide counterpart lipid 2. Results in DNase I protection experiments and the electrophoretic gel patterns in the presence of glutathione, taken together, are consistent with the notion that the success of the disulfide-linker strategy may depend more critically on the DNase I sensitivity of the lipoplexes than on the efficient DNA release induced by intracellular glutathione pool. 相似文献
5.
Kim BK Bae YU Doh KO Hwang GB Lee SH Kang H Seu YB 《Bioorganic & medicinal chemistry letters》2011,21(12):3734-3737
Five cholesterol-based cationic lipids were newly synthesized based on cholest-5-en-3β-oxyethane-N,N,N-trimethylammonium bromide (Chol-ETA) structure where the cholesterol backbone is linked to cationic head via various lengths of ether-linked carbon spacer. The transfection efficiency of these compounds was increased in order of three (Chol-PRO) < four (Chol-BTA) < two (Chol-ETA) methylene unit in their spacer, and was decreased by an addition of isomethyl group to Chol-PRO spacer. In case of the presence of multiple bonds in the spacer, it required the more cationic lipids in liposome formulation than single bond in the spacer to present similar transfection efficiency. 相似文献
6.
Role of intracellular cationic liposome-DNA complex dissociation in transfection mediated by cationic lipids 总被引:6,自引:0,他引:6
The cationic lipid-mediated gene transfer process involves sequential steps: internalization of the cationic lipid-DNA complexes inside the cells via an endocytosis-like mechanism, escape from endosomes, dissociation of the complex, and finally entry of free DNA into the nucleus. However, cationic lipid-DNA complex dissociation in the cytoplasm and the ability of the subsequently released DNA to enter the nucleus have not yet been demonstrated. In this report we showed, using confocal laser scanning analysis, that microinjection of a double fluorescent-labeled cationic lipid-pCMV-LacZ plasmid complex into the cytoplasm of HeLa cells results in efficient complex dissociation. However, the released DNA did not enter the nucleus, and no significant transfection could be detected. In contrast, nuclear microinjection of the cationic lipid-pCMV-LacZ plasmid complex resulted in efficient complex dissociation and transfection of all the cells. Taken together, the data suggest that intracellular dissociation of the cationic lipid-DNA complex is not a limiting step for transfection as previously thought. 相似文献
7.
《Journal of liposome research》2013,23(3):174-186
AbstractCationic liposome (CL)-DNA complexes (lipoplexes) have appeared as leading nonviral gene carriers in worldwide gene therapy clinical trials. Arriving at therapeutic dosages requires the full understanding of the mechanism of transfection. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs have some problems, including low transfection efficiency. The aim of this study was developing novel CLs containing four neutral lipids; cholesterol, 1,2-dioleoyl phosphatidylethanolamine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine as a helper lipid and dimethyl dioctadecyl ammonium bromide as a cationic lipid to increase transfection efficiency. We have investigated the correlation between number of lipid composition and transfection efficiency. The morphology, size and zeta potential of liposomes and lipoplexes were measured and lipoplexes formation was monitored by gel retardation assay. Transfection efficiency was assessed using firefly luciferase reporter assay. It was found that transfection efficiency markedly depended on liposome to plasmid DNA (pDNA) weight ratio, lipid composition and efficiency of pDNA entrapment. High transfection efficiency of plasmid by four component lipoplexes was achieved. Moreover, lipoplexes showed lower transfection efficiency and less cytotoxicity compared to Lipofectamine?. These results suggest that lipid composition of nanoliposomes is an important factor in control of their physical properties and also yield of transfection. 相似文献
8.
Amyloid beta peptide is recognized as the main constituent of the extracellular amyloid plaques, the major neuropathological hallmark of Alzheimer's disease. Abeta is a small peptide constitutively expressed in normal cells, not toxic in the monomeric form but aggregated Abeta is assumed to be the main if not the only factor causing Alzheimer's disease. Interestingly, the new reports suggest neurotoxicity of soluble Abeta oligomers rather than amyloid fibrils. Because of the fact that fibrils were thought to be the main toxic species in AD, early structural studies focused on fibrils themselves and Abeta monomers, as their building blocks while there is practically no data on oligomer structure and mechanism of neurotoxicity. Using a model peptide spanning residues 10–30 of Abeta, obtained by overexpression in bacteria, we have employed mass spectrometry of noncovalent complexes and disulfide rearrangement assay to gain new insight into structure and dynamics of a prenucleation step of Abeta peptide oligomerisation. 相似文献
9.
Ilies MA Johnson BH Makori F Miller A Seitz WA Thompson EB Balaban AT 《Archives of biochemistry and biophysics》2005,435(1):217-226
Cationic lipids provide a promising alternative to the use of viruses for delivering genes therapeutically. Among the several classes of lipidic vectors, those bearing a heterocyclic cationic head have shown important advantages, such as low cytotoxicity and improved efficiency across different cell lines. We recently reported a simple and efficient strategy for obtaining pyridinium cationic lipids, starting from pyrylium salts and primary amines. The present study is aimed to compare the cellular toxicity and transfection efficiency generated by the pyridinium polar head versus the tetramethylammonium one on several tumor cell lines and also in experimental animals, delivered via intratumor injections. Thus, the lead compound 1-(2,3-dioleoyloxypropyl)-2,4,6-trimethylpyridinium lipid (2Oc), coformulated with different helper lipids in various molar ratios, was tested against its ammonium congener DOTAP-a standard transfection reagent. The results revealed that when formulated with cholesterol at 1:1 molar ratio, the pyridinium lipid 2Oc was able to transfect several cancer cell lines with similar or better efficiency than its tetraalkylammonium congener DOTAP, while producing lower cytotoxicity. The NCI-H23 lung cancer cell line was found to be the most susceptible to be transfected. Therefore, we designed an in vivo assay based on this type of carcinoma in nude mice, which were injected intratumoral with 2Oc- and DOTAP-based lipoplexes. The red fluorescent protein reporter revealed that the pyridinium cationic lipid was superior to its tetraalkylammonium congener, transfecting the tissue on a higher area and with higher efficiency. These encouraging findings, together with the simple and efficient synthetic strategy, lay the foundation for further development of pyridinium lipids for gene therapy with improved transfection efficiency in vivo and even further reduced cytotoxicity. 相似文献
10.
The synthesis, physical properties, and transfection potencies of two representives of a new class of divalent, tetraalkyl cationic lipids is described. These cationic lipids are dimers of N,N-Dioleyl-N,N-dimethylammonium chloride (DODAC) joined by a hydrocarbon tether three or six carbons in length (TODMAC3 and TODMAC6, respectively). It is shown that TODMAC6 can display improved transfection properties in comparison to DODAC when formulated into plasmid DNA-cationic lipid complexes. These improved transfection potencies are observed at cationic lipid to DNA charge ratios of two or higher. It is also shown that TODMAC6 exhibits equivalent or improved ability (as compared to DODAC) to induce nonbilayer structure in mixtures with anionic lipid. This is consistent with the hypothesis that the ability of cationic lipids to induce nonbilayer structures when mixed with anionic lipids is correlated to their transfection potency. Complexes containing TODMAC3 on the other hand exhibit lower transfection potencies than achieved with DODAC, behavior that is consistent with steric effects limiting the formation of ion pairs with anionic lipids. It is concluded that TODMAC6 exhibits potential as a transfection agent for in vitro and in vivo use and that the design of cationic lipids according to their ability to induce nonbilayer structure provides a useful guide for synthesis of new cationic lipids. 相似文献
11.
Six novel gemini cationic lipids based on aromatic backbone, bearing n-C14H 29 or n-C16H33 hydrocarbon chains, differing in the length of oxyethylene type spacers -CH2-(CH2-O-CH2)m-CH2- between each ammonium headgroups have been synthesized, where m varies from 1 to 3. Each of these lipids formed stable suspensions in aqueous media. Cationic liposomes were prepared from each of these lipids individually and as mixtures of each cationic lipid and DOPE. These were used as nonviral gene delivery agents. Transfection studies showed that among lipids bearing n-C14H29 chains, the transfection efficacies decreased with the increase in the length of the spacer, whereas in case of lipids bearing n-C 16H33 chains, the transfection efficacies increased with the increase in the length of the spacer. Lipid bearing n-C16H33 hydrocarbon chains with a [-(CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2)-] spacer was found to be a potent gene transfer agent and its transfection was highly serum compatible even in the presence of 50% serum conditions. 相似文献
12.
A previous study showed that filamentous phage could be efficiently transfected into mammalian cells in the presence of the cationic lipid Transfectam. In the present study, we used an experimental plan based on a uniform network (Doehlert) matrix to estimate optimal transfection conditions in two different cell lines, CHO and Cos-7. Using the cationic lipid RPR120535b as a model, we show that optimal conditions can be determined much more readily than with standard response curves. Under optimal conditions as analyzed by FACS, up to 60% of Cos-7 and 50% of CHO cells can be transfected. Furthermore, a comparison of different lipids (Transfectam, RPR120535b, TC1-12 and GAP-DLRIE/DOPE) suggests that lipids with multiple amine groups are more efficient for the transfection of filamentous phage. 相似文献
13.
N J Zuidam D Hirsch-Lerner S Margulies Y Barenholz 《Biochimica et biophysica acta》1999,1419(2):207-220
Transfection of NIH-3T3 cells by a human growth hormone expression vector complexed with liposomes composed of N-(1-(2, 3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP) with or without helper lipids was studied. The transfection efficiency was dependent on the lamellarity of the liposomes used to prepare the lipoplexes. Multilamellar vesicles (MLV) were more effective than large unilamellar vesicles (LUV) of approximately 100 nm, irrespective of lipid composition. The optimal DNA/DOTAP mole ratio for transfection was =0.5, at which only 10-30% of DOTAP in the lipoplex is neutralized. Prolonged incubation time of lipoplexes before addition to cells slightly decreased the level of transfection. A major influence on the lipofection level was found when the mode of lipoplex preparation was varied. Mixing plasmid DNA and DOTAP/DOPE (1:1) LUV in two steps instead of one step resulted in a higher lipofection when at the first step the DNA/DOTAP mole ratio was 0.5 than when it was 2.0. Only static light-scattering measurement, which is related to particle size and particle size instability, revealed differences between the lipoplexes as a function of lamellarity of the vesicles (MLV or LUV), mixing order, and number of mixing steps. Other physical properties of these lipoplexes were dependent only on the DNA/DOTAP mole ratio, i.e. the extent of DOTAP neutralization (as monitored by ionization of the fluorophore 4-heptadecyl-7-hydroxycoumarin) and the extent of defects in lipid organization (as monitored by level of exposure of the fluorophore 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3, 5-hexatriene to water). The secondary and tertiary structure of DNA in lipoplexes was evaluated by circular dichroism spectroscopy. The results of this study point out that the structure of lipoplexes should be physicochemically characterized at two different levels: the macro level, which relates to size and size instability, and the micro level, which relates to the properties described above which are involved in the intimate interaction between the plasmid DNA and the lipids. At the micro level, all parameters are reversible, history-independent and are determined by DNA/DOTAP mole ratio. On the other hand, the macro level (which is the most important for transfection efficiency) is history-dependent and not reversible. 相似文献
14.
Bieong-Kil Kim Kyung-Oh Doh Joo Hyeung Nam Hyungu Kang Jong-Gu Park Ik-Jae Moon Young-Bae Seu 《Bioorganic & medicinal chemistry letters》2009,19(11):2986-2989
The new cholesterol-based cationic lipids B, C, and D with an ether linked spacer were synthesized by using aminopropyl chain extension with acrylonitrile. The cholesterol-based cationic lipid A with carbamoyl linkage were also synthesized in order to compare the difference in transfection efficiency of the two linkage types. To this end, GFP expression of these cationic lipids was confirmed respectively. 相似文献
15.
Four cationic lipids (1-4) with oligo-oxyethylene units at the linkage region between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. Two of these lipids (1 and 2) have an equal number of (CH(2)CH(2)O)(n)() units attached to both C-1 and C-2 positions of the pseudoglyceryl backbone, making their linkage regions similar, while the other two (3 and 4) are unsymmetrical in terms of the number of oxyethylene units in the linkage. Synthesis of lipids 1 and 2 involved the coupling of benzyl glycerol with the corresponding tosylates as a key step. Each of these lipids formed membranous aggregates when dispersed in water and exhibited clear thermotropic phase transitions typical of vesicular assemblies. The lipids 1-4 exhibited enhanced biological activities as gene transfer agents compared to their non-oxyethylene diether analogue, DHTMA. Transfection experiments using aqueous suspensions of these lipids and also their mixtures with cholesterol or dioleoyl phosphatidyl ethanolamine (DOPE) were performed on HeLa cells. The best transfection activity was demonstrated by unsymmetrical lipid 3, which had two oxyethylene units only at the C-1 position of the pseudoglycerylbackbone. 相似文献
16.
Qiang Liu Qian-Qian Jiang Wen-Jing Yi Ji Zhang Xue-Chao Zhang Ming-Bo Wu Yi-Mei Zhang Wen Zhu Xiao-Qi Yu 《Bioorganic & medicinal chemistry》2013,21(11):3105-3113
A series of novel 1,4,7,10-tetraazacyclododecanes (cyclen)-based cationic lipids bearing histidine imidazole group 10a–10e were synthesized. These amphiphilic molecules have different hydrophobic tails (long chain, cholesterol or α-tocopherol) and various type of linking groups (ether, carbamate or ester). These molecules were used as non-viral gene delivery vectors, and their structure–activity relationships were investigated. As expected, the imidazole group could largely improve the buffering capabilities comparing to cyclen. The liposomes formed from 10 and dioleoylphosphatidyl ethanolamine (DOPE) could bind and condense plasmid DNA into nanoparticles with proper size and zeta-potentials. Comparing with Lipofectamine 2000, the formed lipoplexes gave lower transfected cells proportion, but higher fluorescence intensity, indicating their good intracellular delivering ability. Furthermore, results indicate that transfection efficiency of the cationic lipids is influenced by not only the hydrophobic tails but also the linking group. The cyclen-based cationic lipid with α-tocopherol hydrophobic tail and an ester linkage could give the highest transfection efficiency in the presence of serum. 相似文献
17.
Chen J Tian B Yin X Zhang Y Hu D Hu Z Liu M Pan Y Zhao J Li H Hou C Wang J Zhang Y 《Journal of biotechnology》2007,130(2):107-113
The cationic polylactic acid (PLA) nanoparticle has emerged as a promising non-viral vector for gene delivery because of its biocompatibility and biodegradability. However, they are not capable of prolonging gene transfer and high transfection efficiency. In order to achieve prolonged delivery of cationic PLA/DNA complexes and higher transfection efficiency, in this study, we used copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), PLA and chitosan (CS) to prepare MePEG-PLA-CS NPs and PLA-CS NPs by a diafiltration method and prepared NPs/DNA complexes through the complex coacervation of nanoparticles with the pDNA. The object of our work is to evaluate the characterization and transfection efficiency of MePEG-PLA-CS versus PLA-CS NPs. The MePEG-PLA-CS NPs have a zeta potential of 15.7 mV at pH 7.4 and size under 100 nm, while the zeta potential of PLA-CS NPs was only 4.5 mV at pH 7.4. Electrophoretic analysis suggested that both MePEG-PLA-CS NPs and PLA-CS NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed MePEG-PLA-CS NPs exhibit a low cytotoxicity to normal human liver cells. The potential of PLA-CS NPs and MePEG-PLA-CS NPs as a non-viral gene delivery vector to transfer exogenous gene in vitro and in vivo were examined. The pDNA being carried by MePEG-PLA-CS NPs, PLA-CS NPs and lipofectamine could enter and express in COS7 cells. However, the transfection efficiency of MePEG-PLA-CS/DNA complexes was better than PLA-CS/DNA and lipofectamine/DNA complexes by inversion fluorescence microscope and flow cytometry. It was distinctively to find that the transfection activity of PEGylation of complexes was improved. The nanoparticles were also tested for their ability to transport across the gastrointestinal mucosa in vivo in mice. In vivo experiments showed obviously that MePEG-PLA-CS/DNA complexes mediated higher gene expression in stomach and intestine of BALB/C mice compared to PLA-CS/DNA and lipofectamine/DNA complexes. These results suggested that MePEG-PLA-CS NPs have favorable properties for non-viral gene delivery. 相似文献
18.
A novel series of cationic amphiphiles based on dialkyl glutamides with cationic pyridinium head group were synthesized as potential gene delivery agents. Four cationic lipids with glutamide as linker and varying chain lengths were tested for their transfection efficiency in three cell lines. The DNA-lipid complexes were characterized for their ability to bind to DNA, protection from nuclease digestion, size, zeta-potential, and toxicity. All four lipids demonstrated efficient transfection in MCF-7, COS, and HeLa cells, and the reporter gene expression was much higher with DOPE as the helper lipid in the formulation when compared to cholesterol. Among these 14-carbon lipids, lipid 2 has shown the highest transfection efficiency, complete protection of DNA from nuclease digestion, and low toxicity. Interestingly, lipid 2 has also shown remarkable enhancement in transfection in the presence of serum. 相似文献
19.
In the procedure for cationic liposome-mediated transfection, the cationic lipid is usually mixed with a "helper lipid" to increase its transfection potency. The importance of helper lipids, including dioleoylphosphatidylcholine (DOPC) and phosphatidylethanolamine (dioleoyl PE), DO was examined. Freeze-fracture electron microscopy of DNA:cationic complexes containing the pSV-beta-GAL plasmid DNA, the cationic lipid dioleoyl trimethylammonium propane, and these helper lipids showed that the most efficient mixtures were aggregates of ensheathed DNA and fused liposomes. PE-containing complexes aggregated rapidly when added to culture media containing polyanions, whereas PC-containing complexes did not. However, more granules of PC-containing complexes were formed on cell surfaces after the complexes were added to Chinese hamster ovary (CHO) cells in transfection media. Pronase treatment inhibited transfection, whereas dilute poly-L-lysine enhanced transfection, indicating that the attachment of DNA:liposome complexes to cell surfaces was mediated by electrostatic interaction. Fluorescence spectroscopy studies confirmed that more PC-containing complexes than PE-containing complexes were associated with CHO cells, and that more PC-containing complexes were located in a low pH environment (likely to be within endosomes) with time. Cytochalasin-B had a stronger inhibitory effect on PC-containing liposome-mediated than on PE-containing liposome-mediated transfection. Confocal microscopic recording of the fluorescently label lipid and DNA uptake process indicated that many granules of DNA:cationic liposome complexes were internalized as a whole, whereas some DNA aggregates were left out on the cell surfaces after liposomes of the complexes fused with the plasma membranes. For CHO cells, endocytosis seems to be the main uptake pathway of DNA:cationic liposome complexes. More PC-containing granules than PE-containing granules were formed on cell surfaces by cytoskeleton-directed membrane motion, after their respective DNA:liposome complexes attached to cell surfaces by electrostatic means. Formation of granules on the cell surface facilitated and/or triggered endocytosis. Fusion between cationic liposomes and the cell membrane played a secondary role in determining transfection efficiency. 相似文献
20.
Floch V Delépine P Guillaume C Loisel S Chassé S Le Bolc'h G Gobin E Leroy JP Férec C 《Biochimica et biophysica acta》2000,1464(1):95-103
Performances of cationic lipid formulations for intravenous gene delivery to mouse lungs have been previously reported. We report in this study that cationic phosphonolipids, when appropriately formulated, can be good synthetic vectors for gene delivery to lung after intravenous administration. One of our reagents, GLB43, was capable of mediating a 500-fold higher expression in the lungs of mice than could be obtained with free pDNA alone (P=0.018). We demonstrate that the most important parameters for cationic phosphonolipid transfection activity after systemic administration are the chemical structure of the cationic phosphonolipid, the lipid to DNA charge ratio and the inclusion of co-lipid in the formulation. We report using a luciferase reporter gene that transfection activity in vivo 24 h after cationic phosphonolipid systemic administration could not be predicted from in vitro analysis. In contrast to in vitro studies, cationic phosphonolipids including the oleyl acyl chains (GLB43) were more effective than its analogue with the myristyl acyl chains (GLB73). Using pathological analysis of animal livers, we demonstrate that the toxicity level was correlated with the lipoplex formulation and the lipid to DNA ratio. 相似文献