首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method based on the molecularly imprinted solid-phase extraction (MISPE) procedure has been developed for the simultaneous determination of concentrations of sulfonylurea herbicides such as chlorsulfuron (CS), monosulfuron (MNS), and thifensulfuron methyl (TFM) in maize samples by liquid chromatography–tandem quadrupole mass spectrometry (LC–MS/MS). The molecularly imprinted polymer (MIP) for sulfonylurea herbicides was synthesized by precipitation polymerization using chlorsulfuron as the template molecule, 2-(diethylamino)ethyl methacrylate (DEAMA) as the functional monomer, and trimethylolpropane trimethacrylate (TRIM) as the cross-linker. The selectivities of the chlorsulfuron template and its analogs on the molecularly imprinted polymer were evaluated by high-performance liquid chromatography (HPLC). The extraction and purification procedures for the solid-phase extraction (SPE) cartridge with a molecularly imprinted polymer as the adsorbent for the selected sulfonylurea herbicides were then established. A molecularly imprinted solid-phase extraction method followed by high-performance liquid chromatography–tandem mass spectrometry for the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl was also established. The mean recoveries of these compounds in maize were in the range 75–110% and the limits of detection (LOD) of chlorsulfuron, monosulfuron, and thifensulfuron methyl were 0.02, 0.75, and 1.45 μg kg−1, respectively. It was demonstrated that the MISPE–HPLC–MS/MS method could be applied to the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl in maize samples.  相似文献   

2.
Parabens (alkyl esters of p-hydroxybenzoic acid) are widely used as antimicrobial preservatives in cosmetic products, pharmaceuticals, and food processing. However, weak estrogenicity of some parabens has been revealed from several studies. Human exposure to parabens may be assessed by measuring the conjugated or free species of these compounds or their metabolites in urine. We have developed a method using on-line solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry with peak focusing to measure the urinary concentrations of methyl, ethyl, propyl, n- and iso- butyl, and benzyl parabens. This method has good reproducibility and accuracy with detection limits for all analytes below 0.2ng/mL in 100microL of urine, and permits quick and accurate analysis of a large number of samples in epidemiologic studies for assessing the prevalence of human exposure to parabens. Using this method, we detected methyl, ethyl, and propyl parabens, mostly as conjugated species, in 22 urine samples collected from anonymous adults.  相似文献   

3.
We developed a sensitive, selective and precise method for measuring herbicide metabolites in human urine. Our method uses automated liquid delivery of internal standards and acetate buffer and a mixed polarity polymeric phase solid phase extraction of a 2 mL urine sample. The concentrated eluate is analyzed using high-performance liquid chromatography-tandem mass spectrometry. Isotope dilution calibration is used for quantification of all analytes. The limits of detection of our method range from 0.036 to 0.075 ng/mL. The within- and between-day variation in pooled quality control samples range from 2.5 to 9.0% and from 3.2 to 16%, respectively, for all analytes at concentrations ranging from 0.6 to 12 ng/mL. Precision was similar with samples fortified with 0.1 and 0.25 ng/mL that were analyzed in each run. We validated our selective method against a less selective method used previously in our laboratory by analyzing human specimens using both methods. The methods produced results that were in agreement, with no significant bias observed.  相似文献   

4.
Organophosphorus (OP) pesticides kill by disrupting a targeted pest's brain and nervous systems. But if humans and other animals are sufficiently exposed, OP pesticides can have the same effect on them. We developed a fast and accurate high-performance liquid chromatography–tandem mass spectrometry method for the quantitative measurement of the following six common dialkylphosphate (DAP) metabolites of organophosphorus insecticides: dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate, (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). The general sample preparation included 96-well plate solid phase extraction using weak anion exchange cartridges. The analytical separation was performed by high-performance liquid chromatography with a HILIC column. Detection involved a triple quadrupole mass spectrometer with an ESI probe in negative ion mode using multiple reaction monitoring. Repeated analyses of urine samples spiked at 150, 90 and 32 ng/mL with the analytes gave relative standard deviations of less than 22%. The extraction efficiency ranged from 40% to 98%. The limits of detection were in the range of 0.04–1.5 ng/mL. The throughput is 1152 samples per week, effectively quadrupling our previous throughput. The method is safe, quick, and sensitive enough to be used in environmental and emergency biological monitoring of occupational and nonoccupational exposure to organophosphates.  相似文献   

5.
Demonstrating the presence or absence of cocaine (COC) and COC-related molecules in postmortem fluids and/or tissues can have serious legal consequences and may help determine the cause of impairment and/or death. We have developed a simple method for the simultaneous determination of COC and the COC metabolites benzoylecgonine (BE), norbenzoylecgonine (NBE), ecgonine methyl ester (EME), ecgonine (E), and norcocaine (NCOC), as well as anhydroecgonine methyl ester (AEME) (a unique byproduct of COC smoking), cocaethylene (a molecule formed by the concurrent use of COC and ethanol) and their related metabolites, anhydroecgonine (AE), norcocaethylene (NCE), and ecgonine ethyl ester (EEE). This method incorporates a Zymark RapidTrace automated solid-phase extraction (SPE) system, gas chromatography/mass spectrometry (GC/MS) and 2,2,3,3,3-pentafluoro-1-propanol (PFP)/pentafluoropropionic anhydride (PFPA) derivatives. The lower limits of detection ranged from 0.78 to 12.5 ng/mL and the linear dynamic range for most analytes was 0.78-3200 ng/mL. The extraction efficiencies were from 26 to 84% with the exception of anhydroecgonine and ecgonine, which were from 1 to 4%. We applied this method to five aviation fatalities. This method has proven to be simple, robust and accurate for the simultaneous determination of COC and 11 COC metabolites in postmortem fluids and tissues.  相似文献   

6.
A specific and sensitive method for determination of intracellular ciclosporin A (CsA) and its six main metabolites AM1, AM9, AM1c, AM1c9, AM19 and AM4N, in isolated T-lymphocytes and whole blood is described. T-lymphocytes were separated from whole blood using Prepacyte. The analytes were extracted and purified from isolated lymphocytes and whole blood by protein precipitation followed by solid-phase extraction (SPE). The analytes and the internal standard, ciclosporin C (CsC), were separated on a reversed phase C8 column (30 mm x 2.1mm, 3 microm) with a 10 mm x 2 mm, 5 microm Drop-In Guard Cartridge, using gradient elution chromatography and tandem ion trap mass spectrometry detection. The method has been validated in accordance with FDA guidelines and showed linear range from 0.25 to 500 ng/mL for CsA, 0.5 to 500 ng/mL for AM1, AM9 and AM19, 1 to 500 ng/mL for AM4N, AM1c and AM1c9 in intracellular matrix, and 2.5 to 3000 ng/mL for all analytes in whole blood. The applicability of the method is shown on patient samples.  相似文献   

7.
In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%.  相似文献   

8.
A selective and sensitive method for the simultaneous determination of hypericin and hyperforin--the two main active ingredients of St. John's Wort (SJW) extract--in human plasma depending on liquid/liquid-extraction and LC/MS/MS detection has been developed, validated after specifying the stability of the photosensitive hypericin in plasma samples during light exposure and applied to samples of a patient. After extraction with ethyl acetate/n-hexane in the darkness, sample extracts were chromatographed isocratically within 6 min on a Kromasil RP-18 column. The analytes were detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source. The limit of quantification was 0.05 ng/mL for hypericin and 0.035 ng/mL for hyperforin. The accuracy of the method varied between 101.9 and 114.2% and the precision ranged from 4.7 to 15.4% (S.D., batch-to-batch) for both analytes. The method was linear at least between 0.05 and 10 ng/mL for hypericin and between 0.035 and 100 ng/mL for hyperforin. Using this method hypericin and hyperforin were determined successfully in a patient over seven days following discontinuation of exposure with therapeutic doses of St. John's Wort extract.  相似文献   

9.
Dextropropoxyphene and nordextropropoxyphene were extracted from urine samples with mixed mode solid-phase extraction cartridges. After elution and evaporation to dryness, the eluate was dissolved in mobile phase and each sample was injected in a LC-ESI-MS system. Quantification was carried out in the selected ion monitoring mode. This article shows the possibility to analyse drugs of abuse substances in urine with a single quadrupole mass spectrometer if only a thorough work-up procedure and a sufficient chromatographic separation is accomplished. In order to enhance the fragmentation of the analytes, in-source fragmentation was carried out. One fragment and the pseudomolecular ion per analyte together with chromatographic retention times were sufficient to verify that the sought compound was found in the samples. In- and between day variation was lower than 10% and the recovery was well above 90%. The analytes were quantified in the range 100-10000 ng/ml urine.  相似文献   

10.
A rapid, sensitive, selective and specific HPLC/ESI-MS/MS assay method was developed and validated for the simultaneous quantitation of alpha-/beta-diastereomers of arteether (AE), sulphadoxine (SDX) and pyrimethamine (PYR) in rat blood plasma using propyl ether analogue of beta-arteether as internal standard. The method involved a single-step, liquid-liquid extraction with ethyl acetate and the analytes were chromatographed on a C18 chromatographic column by isocratic elution with methanol:ammonium acetate buffer (10 mM, pH 4) (90:10%, v/v) and analyzed by tandem mass spectrometry. The run time was 4.5 min and the weighted (1/x2) calibration curves were linear over a range of 0.78-400 ng ml-1. The method was validated fully and the lower limit of quantification (LLOQ) in plasma was 0.78 ng ml-1 for all the analytes. The intra- and inter-day precision and accuracy were found to be well within the acceptable limits (<15%) and the analytes were stable after three freeze-thaw (f-t) cycles. The absolute recoveries were consistent and reproducible. The assay method was applied to pre-clinical pharmacokinetic interaction studies of alpha-/beta-AE, SDX and PYR in rats.  相似文献   

11.
We have developed a highly selective and sensitive analytical method to quantify paraquat and diquat by use of high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). The sample preparation includes solid phase extraction that uses weak cation exchange cartridges. These highly charged dual quaternary amines were not retained by standard reversed phase columns, but they could be adequately separated through HPLC with a HILIC column. The detection was carried out with a triple quadrupole mass spectrometer with an electrospray ionization probe in positive ion mode in multiple reaction monitoring. Repeated analysis in human urine samples spiked with low (5 ng/ml), medium (15 ng/ml), and high (30 ng/ml) concentrations of the analytes yielded relative standard deviations of less than 9%. The extraction efficiencies ranged from 77.7% to 94.2%. The limits of detection were in the range of 1 ng/ml.  相似文献   

12.
A rapid and sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) for simultaneous determination of doxazosin and verapamil in human serum has been developed. Trimipramine-d3 as an isotopic labelled internal standard was used for quantification. Serum samples were prepared by simple liquid–liquid extraction with mixture of tert butyl methyl ether and ethyl acetate (1:1, v:v). The analytes and internal standard were separated on C18 column using an isocratic elution with 5 mM ammonium formate with 0.02% formic acid and 0.02% formic acid in acetonitrile (55:45, v:v) at a flow rate of 1.1 mL/min. Positive TurboIonSpray mass spectrometry was used with multiple reaction monitoring of the transitions at: m/z 455.3 → 165.2 and 150.2 for verapamil, m/z 452.2 → 344.4 and 247.4 for doxazosin, m/z 298.2 → 103.1 for trimipramine-d3. Linearity was achieved between 1 and 500 ng/mL (R2 ≥ 0.997) for both analytes. An extensive pre-study method validation was carried out in accordance with FDA guidelines. This assay was successfully applied to determine the serum concentrations of doxazosin and verapamil in suspect non-compliance patients.  相似文献   

13.
A rapid and sensitive method for determination and screening in human plasma of talinolol is described using propranolol as the internal standard. The analytes in plasma were extracted by liquid-liquid extraction using methyl t-butyl ether. After removed and dried the upper organic phase, the extracts were reconstituted with a fixed volume of buffer of ammonium acetate and acetonitrile (60:40, v/v). The extracts were analyzed by a HPLC coupled to electrospray ionization mass spectrometry (HPLC-MS/ESI). The HPLC separation of the analytes was performed on a Phenomenex C18 (250 mmx4.6 mm, 5 microm, USA) column, with a flow rate of 0.85 mL/min. The complete elution was obtained within 5.5 min. The calibration curve was linear in the 1.0-400.0 ng/mL range for talinolol, with a coefficient of determination of 0.9996. The average extraction recovery was above 83%. The methodology recovery was between 101% and 102%. The limit of detection (LOD) was 0.3 ng/mL for talinolol. The intraday and inter-day coefficients of variation were less than 6%. This HPLC-MS/ESI procedure was used to assess the pharmacokinetics of talinolol. A single oral 50 mg dose of talinolol tablet was administered to 12 healthy Chinese volunteers, the main pharmacokinetic data are as follows: Cmax was 147.8+/-63.8 ng/mL; tmax was 2.0+/-0.7 h; t1/2 was 12.0+/-2.6 h. The method is accurate, sensitive and simple for the pharmacokinetic study of talinolol.  相似文献   

14.
A reliable liquid chromatography/tandem mass spectrometry has been developed for simultaneous evaluation of the activities of five cytochrome P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) in rat plasma and urine. The five-specific probe substrates/metabolites include phenacetin/paracetamol (CYP1A2), tolbutamide/4-hydroxytolbutamide and carboxytolbutamide (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), dextromethorphan/dextrorphan (CYP2D6), and midazolam/1'-hydroxymidazolam (CYP3A). Internal standards were brodimoprim (for phenacetin, paracetamol, midazolam and 1'-hydroxymidazolam), ofloxacin (for 4'-hydroxymephenytoin, dextromethorphan and dextrorphan) and meloxicam (for tolbutamide, 4-hydroxytolbutamide and carboxytolbutamide). Sample preparation was conducted with solid-phase extraction using Oasis HLB cartridges. The chromatography was performed using a C(18) column with mobile phase consisting of methanol/0.1% formic acid in 20 mM ammonium formate (75:25). The triple-quadrupole mass spectrometric detection was operated in both positive mode (for phenacetin, paracetamol, midazolam, 1'-hydroxymidazolam, brodimoprim, 4'-hydroxymephenytoin, dextromethorphan, dextrorphan and ofloxacin) and negative mode (for tolbutamide, 4-hydroxytolbutamide, carboxytolbutamide and meloxicam). Multiple reaction monitoring mode was used for data acquisition. Calibration ranges in plasma were 2.5-2500 ng/mL for phenacetin, 2.5-2500 ng/mL for paracetamol, 5-500 ng/mL for midazolam, and 0.5-500 ng/mL for 1'-hydroxymidazolam. In urine calibration ranges were 5-1000 ng/mL for dextromethorphan, 0.05-10 microg/mL for dextrorphan and 4'-hydroxymephenytoin, 5-2000 ng/mL for tolbutamide, 0.05-20 microg/mL for 4-hydroxytolbutamide and 0.025-10 microg/mL for carboxytolbutamide. The intra- and inter-day precision were 4.3-12.4% and 1.5-14.8%, respectively for all of the above analytes. The intra- and inter-day accuracy ranged from -9.1 to 8.3% and -10 to 9.2%, respectively for all of the above analytes. The lower limits of quantification were 2.5 ng/mL for phenacetin and paracetamol, 5 ng/mL for midazolam, 0.5 ng/mL for 1'-hydroxymidazolam, 5 ng/mL for dextromethorphan, 50 ng/mL for dextrorphan and 4'-hydroxymephenytoin, 5 ng/mL for tolbutamide, 50 ng/mL for 4-hydroxytolbutamide and 25 ng/mL for carboxytolbutamide. All the analytes were evaluated for short-term (24 h, room temperature), long-term (3 months, -20 degrees C), three freeze-thaw cycles and autosampler (24 h, 4 degrees C) stability. The stability of urine samples was also prepared with and without beta-glucuronidase incubation (37 degrees C) and measured comparatively. No significant loss of the analytes was observed at any of the investigated conditions. The current method provides a robust and reliable analytical tool for the above five-probe drug cocktail, and has been successfully verified with known CYP inducers.  相似文献   

15.
The urinary excretion of unmetabolized styrene can be a very good indicator for biomonitoring styrene in occupationally exposed people. The use of a new urine sampling system, involving a solid-phase extraction cartridge, offers several advantages for determining styrene. The advantages are especially related to the pre-analytical phase of styrene determination, which may be influenced by many variables. The effect on styrene recovery of sorbent type, eluting solvent, elution volume, elution flow-rate, and the addition of methanol to the washing solvent, was evaluated by experimental design methodology. As a result, Oasis HLB cartridges were selected for urine sampling, as well as 1.5 mL of ethyl acetate at 0.5 mL/min for eluting the retained styrene. These conditions were then applied to the validation of the solid-phase extraction combined with GC-MS method for the sampling and analysis of unmetabolized styrene in urine. The overall uncertainty was in the 12-22% range and the limit of detection was 2.2 microg/L for a 4 mL urine sample. The stability of styrene has been studied both in cartridges and in vials under different storage periods. After 1 month period the styrene stored on cartridges at room temperature remained stable, whereas this is not the case for styrene recovery from vials. The results obtained indicate that on-site solid-phase extraction of urine can provide a simple, accurate and reproducible sampling and analytical method for the biomonitoring of styrene in urine.  相似文献   

16.
The rodenticide monofluoroacetate (MFA) and monochloroacetate (MCA), a chemical intermediate from several chemical syntheses, have been identified as potential agents of chemical terrorism due to their high toxicity. In preparation for response to poisonings and mass exposures, we have developed a quantification method using isotopic dilution to determine MFA and MCA in urine from 50 to 5000 ng/mL. Both analytes were extracted from urine using solid-phase extraction; extraction recoveries were 62% (MFA) and 76% (MCA). The extracts were then separated with isocratic high-performance liquid chromatography and identified using electrospray ionization tandem mass spectrometry, with detection limits of 0.9 and 7.0 ng/mL for MFA and MCA, respectively. Selectivity was established for both analytes with unique chromatographic retention times which were correlated with isotopically labeled internal standards and the use of two mass spectral transitions for each compound. The intra-day variability was less than 5% for both analytes and the inter-day variability was 7% for MFA and 6% for MCA.  相似文献   

17.
Glycyrrhizin (GLY) which has been widely used in traditional Chinese medicinal preparation possesses various pharmacological effects. In order to investigate the pharmacokinetic behavior of GLY in human after oral administration of GLY or licorice root, a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of GLY and its major metabolite glycyrrhetic acid (GA) in human plasma. The method involved a solid phase extraction of GLY, GA, and alpha-hederin, the internal standard (IS), from plasma with Waters Oasis MCX solid phase extraction (SPE) cartridges (30 mg) and a detection using a Micromass Quattro LC liquid chromatography/tandem mass spectrometry system with electrospray ionization source in positive ion mode. Separation of the analytes was achieved within 5min on a SepaxHP CN analytical column with a mobile phase of acetonitrile:water (50:50, v:v) containing 0.1% formic acid and 5mM ammonium acetate. Multiple reaction monitoring (MRM) was utilized for the detection monitoring 823--> 453 for GLY, 471--> 177 for GA and 752--> 456 for IS. The LC-MS/MS method was validated for specificity, sensitivity, accuracy, precision, and calibration function. The assay had a calibration range from 10 to 10,000 ng/mL and a lower limit of quantification of 10 ng/mL for both GLY and GA when 0.2 mL plasma was used for extraction. The percent coefficient of variation for accuracy and precision (inter-run and intra-run) for this method was less than 11.0% with a %Nominal ranging from 87.6 to 106.4% for GLY and 93.7 to 107.8% for GA. Stability of the analytes over sample processing (freeze/thaw, bench-top and long-term storage) and in the extracted samples was also tested and established.  相似文献   

18.
The collection of oral fluid for drug testing is easy and non-invasive. This study developed a drug testing method using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) in selected-reaction monitoring (SRM) mode. We tested the method on the analysis of four opiates and their metabolites, five amphetamines, flunitrazepam and its two metabolites, and cocaine and its four metabolites in oral fluid. 100-μL samples of oral fluid were diluted with twice the amount of water then spiked with isotope-labeled internal standards. After the samples had undergone high-speed centrifugation for 20 min, we analyzed the supernatant. The recovery of the sample preparation ranged from 81 to 108%. We compared the performance of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The ion suppression of most analytes on ESI (28-78%) was lower than that of APCI and APPI. A post-column flow split (5:1) did not reduce the matrix effect on ESI. Direct APPI performed better than dopant-assisted APPI using toluene. ESI, APCI and APPI limits of quantitation mostly ranged from 0.11 to 1.9 ng/mL, 0.02 to 2.2 ng/mL and 0.02 to 2.1 ng/mL, respectively, but were much higher on amphetamine and ecgonine methyl ester (about 2.7-4.7 ng/mL, 8.7-14 ng/mL, and 10-19 ng/mL, respectively). Most of the bias percentages (accuracy) and relative standard deviations (precision) on spiked samples were below 15%. This method greatly simplifies the process of sample preparation and shortens the chromatographic time to only 7.5 min per run and is able to detect analytes at sub-ppb levels.  相似文献   

19.
A sensitive, specific and fast high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) assay for the determination of vinorelbine in mouse and human plasma is presented. A 200 microL aliquot was extracted with solid-phase extraction (SPE) using Bond-Elut C(2) cartridges. Dried extracts were reconstituted in 100 microL 1 mM ammonium acetate pH 10.5-acetonitrile-methanol (21:9:70, v/v/v) containing the internal standard vintriptol (100 ng/mL) and 10 microL volumes were injected onto the HPLC system. Separation was achieved on a 50 mm x 2.0 mm i.d. Gemini C(18) column using isocratic elution with 1 mM ammonium acetate pH 10.5-acetonitrile-methanol (21:9:70, v/v/v) at a flow rate of 0.4 mL/min. HPLC run time was only 5 min. Detection was performed using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay quantifies vinorelbine from 0.1 to 100 ng/mL using human plasma sample volumes of 200 microL. With this method vinorelbine can be measured in mouse plasma samples when these samples are diluted eight times in control human plasma. Calibration samples prepared in control human plasma can be used for the quantification of the drug. The lower limit of quantification in mouse plasma is 0.8 ng/mL. This assay is used to support preclinical and clinical pharmacologic studies with vinorelbine.  相似文献   

20.
We have developed a method to measure 12 urinary phenolic metabolites of pesticides or related chemicals. The target chemicals for our method are 2-isopropoxyphenol; 2,4-dichlorophenol; 2,5-dichlorophenol; carbofuranphenol; 2,4,5-trichlorophenol; 2,4,6-trichlorophenol; 3,5,6-trichloro-2-pyridinol; para-nitrophenol, ortho-phenylphenol, pentachlorophenol, 1-naphthol and 2-naphthol. The sample preparation involves enzyme hydrolysis, isolation of the target chemicals using solid phase extraction cartridges, a phase-transfer catalyzed derivatization, cleanup using sorbent-immobilized liquid/liquid extraction cartridges, and concentration of the sample. Derivatized samples are analyzed by capillary gas chromatography-tandem mass spectroscopy using isotope dilution calibration for quantification. The limits of detection are in the mid ng/L range and the average coefficient of variation was below 15% for most of the analytes. Using our method, we measured concentrations of the target chemicals in urine samples from the general population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号