首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Early neural patterning in vertebrates involves signals that inhibit anterior (A) and promote posterior (P) positional values within the nascent neural plate. In this study, we have investigated the contributions of, and interactions between, retinoic acid (RA), Fgf and Wnt signals in the promotion of posterior fates in the ectoderm. We analyze expression and function of cyp26/P450RAI, a gene that encodes retinoic acid 4-hydroxylase, as a tool for investigating these events. Cyp26 is first expressed in the presumptive anterior neural ectoderm and the blastoderm margin at the late blastula. When the posterior neural gene hoxb1b is expressed during gastrulation, it shows a strikingly complementary pattern to cyp26. Using these two genes, as well as otx2 and meis3 as anterior and posterior markers, we show that Fgf and Wnt signals suppress expression of anterior genes, including cyp26. Overexpression of cyp26 suppresses posterior genes, suggesting that the anterior expression of cyp26 is important for restricting the expression of posterior genes. Consistent with this, knock-down of cyp26 by morpholino oligonucleotides leads to the anterior expansion of posterior genes. We further show that Fgf- and Wnt-dependent activation of posterior genes is mediated by RA, whereas suppression of anterior genes does not depend on RA signaling. Fgf and Wnt signals suppress cyp26 expression, while Cyp26 suppresses the RA signal. Thus, cyp26 has an important role in linking the Fgf, Wnt and RA signals to regulate AP patterning of the neural ectoderm in the late blastula to gastrula embryo in zebrafish.  相似文献   

3.
In higher vertebrates, the paraxial mesoderm undergoes a mesenchymal to epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study, we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. Ectopic expression of Wnt6 leads to sustained expression of markers associated with the epithelial somites and reduced or delayed expression of markers associated with mesenchymally organised somitic tissue. More importantly, we show that Wnt6-producing cells are able to rescue somite formation after ectoderm ablation. Furthermore, injection of Wnt6-producing cells following the isolation of the neural tube/notochord from the segmental plate was able to rescue somite formation at both the structural (epithelialisation) and molecular level, as determined by the expression of marker genes like Paraxis or Pax-3. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists, which result in the segmental plate being unable to form somites. These results show that Wnt6, the only known member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. We propose a model in which the localisation of Wnt6 and its antagonists regulates the process of epithelialisation in the paraxial mesoderm.  相似文献   

4.
5.
The molecular mechanisms by which the primordia of the midface grow and fuse to form the primary palate portion of the craniofacial region are not well characterized. This is in spite of the fact that failure of growth and/or fusion of these primordia leads to the most common craniofacial birth defect in humans (i.e. clefts of the lip and/or palate). Bmp4 plays a critical role during early embryonic development and has previously been shown to play a role in epithelial-mesenchymal interactions in the craniofacial region of chicks. We analyze the expression of bmp4 in mouse as the midfacial processes undergo fusion to form the primary palate. We show that bmp4 is expressed in a very distinct manner in the three midfacial processes (lateral nasal, LNP, medial nasal, MNP, and maxillary processes, MxP) that ultimately fuse to form the midface. Prior to fusion of the midfacial processes, bmp4 is expressed in the ectoderm of the LNP, MNP, and MxP in a distinct spatial and temporal manner near and at the site of fusion of the midface. Bmp4 appears to demarcate the cells in the LNP and MNP that will eventually contact and fuse with each other. As fusion of the three prominences proceeds, some bmp4 expressing cells are trapped in the fusion line. Later, the expression of bmp4 switches to the mesenchyme of the midface underlying its initial expression in the ectoderm. The switch occurs soon after fusion of the three processes. The pattern of expression in the midfacial region implicates the important role of bmp4 in mediating the fusion process, possibly through apoptosis of cells in the putative site of fusion, during midfacial morphogenesis.  相似文献   

6.
Wnt6 marks sites of epithelial transformations in the chick embryo   总被引:3,自引:0,他引:3  
In a screen for Wnt genes executing the patterning function of the vertebrate surface ectoderm, we have isolated a novel chick Wnt gene, chick Wnt6. This gene encodes the first pan-epidermal Wnt signalling molecule. Further sites of expression are the boundary of the early neural plate and surface ectoderm, the roof of mesencephalon, pretectum and dorsal thalamus, the differentiating heart, and the otic vesicle. The precise sites of Wnt6 expression coincide with crucial changes in tissue architecture, namely epithelial remodelling and epithelial-mesenchymal transformation (EMT). Moreover, the expression of Wnt6 is closely associated with areas of Bmp signalling.  相似文献   

7.
Ectodermal Wnt6 plays an important role during development of the somites and the lateral plate mesoderm. In the course of development, Wnt6 expression shows a dynamic pattern. At the level of the segmental plate and the epithelial somites, Wnt6 is expressed in the entire ectoderm overlying the neural tube, the paraxial mesoderm and the lateral plate mesoderm. With somite maturation, expression becomes restricted to the lateral ectoderm covering the ventrolateral lip of the dermomyotome and the lateral plate mesoderm. To study the regulation of Wnt6 expression, we have interfered with neighboring signaling pathways. We show that Wnt1 and Wnt3a signaling from the neural tube inhibit Wnt6 expression in the medial surface ectoderm via dermomyotomal Wnt11. We demonstrate that Wnt11 is an epithelialization factor acting on the medial dermomyotome, and present a model suggesting Wnt11 and Wnt6 as factors maintaining the epithelial nature of the dorsomedial and ventrolateral lips of the dermomyotome, respectively, during dermomyotomal growth.  相似文献   

8.
Lens formation in mouse is critically dependent on proper development of the retinal neuroectoderm that is located close beneath the head surface ectoderm. Signaling from the prospective retina triggers lens‐specific gene expression in the surface‐ectoderm. Supression of canonical Wnt/β‐catenin signaling in the surface ectoderm is one of the prerequisites for lens development because, as we show here, ectopic Wnt activation in the retina and lens abrogates lens formation. Wnt inhibiton is mediated by signals coming from the retina but its exact mechanism is unknown. We show that Pax6 directly controls expression of several Wnt inhibitors such as Sfrp1, Sfrp2, and Dkk1 in the presumptive lens. In accordance, absence of Pax6 function leads to aberrant canonical Wnt activity in the presumptive lens that subsequently impairs lens development. Thus Pax6 is required for down‐regulation of canonical Wnt signaling in the presumptive lens ectoderm. genesis 48:86–95, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
12.
Direct auto- and cross-regulatory interactions between Hox genes serve to establish and maintain segmentally restricted patterns in the developing hindbrain. Rhombomere r4-specific expression of both Hoxb1 and Hoxb2 depends upon bipartite cis Hox response elements for the group 1 paralogous proteins, Hoxal and Hoxbl. The DNA-binding ability and selectivity of these proteins depend upon the formation of specific heterodimeric complexes with members of the PBC homeodomain protein family (Pbx genes). The r4 enhancers from Hoxb1 and Hoxb2 have the same activity, but differ with respect to the number and organisation of bipartite Pbx/Hox (PH) sites required, suggesting the intervention of other components/sequences. We report here that another family of homeodomain proteins (TALE, Three-Amino acids-Loop-Extension: Prep1, Meis, HTH), capable of dimerizing with Pbx/EXD, is involved in the mechanisms of r4-restricted expression. We show that: (1) the r4-specific Hoxb1 and Hoxb2 enhancers are complex elements containing separate PH and Prep/Meis (PM) sites; (2) the PM site of the Hoxb2, but not Hoxb1, enhancer is essential in vivo for r4 expression and also influences other sites of expression; (3) both PM and PH sites are required for in vitro binding of Prepl-Pbx and formation and binding of a ternary Hoxbl-Pbxla (or 1b)-Prepl complex. (4) A similar ternary association forms in nuclear extracts from embryonal P19 cells, but only upon retinoic acid induction. This requires synthesis of Hoxbl and also contains Pbx with either Prepl or Meisl. Together these findings highlight the fact that PM sites are found in close proximity to bipartite PH motifs in several Hox responsive elements shown to be important in vivo and that such sites play an essential role in potentiating regulatory activity in combination with the PH motifs.  相似文献   

13.
14.
15.
A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.  相似文献   

16.
Members of the FGF family play diverse roles in patterning, cell proliferation and differentiation during embryogenesis. To begin to address their function during craniofacial development we have analyzed the expression of 18 members of the Fgf family (Fgf1-15, -17, -18 and -20) and the four members of the FGF-receptor family in the prospective midfacial region between E9.5 and E11.5 by whole-mount in situ hybridization. We show that at E9.5, Fgf3, -8, -9, -10 and -17 are broadly expressed in midfacial ectoderm. Concomitant with the outgrowth of the nasal processes at E10.5, expression of Fgf3, -8, -9, -10, -15, -17 and -18 was detected in spatially restricted regions of ectoderm at the edge of the nasal pit and at the oral edge of the medial nasal process. Expression of Fgf8, Fgf9, Fgf10 and Fgf17 was still observed in these domains at E11.5. In contrast to the restricted expression patterns of the ligands, FgfR1 and FgfR2 were broadly expressed in facial mesenchyme and ectoderm, respectively, indicating a wide competence of midfacial tissue to respond to FGF signaling.  相似文献   

17.
The Nodal signaling pathway is known from earlier work to be an essential mediator of oral ectoderm specification in the sea urchin embryo, and indirectly, of aboral ectoderm specification as well. Following expression of the Nodal ligand in the future oral ectoderm during cleavage, a sequence of regulatory gene activations occur within this territory which depend directly or indirectly on nodal gene expression. Here we describe additional regulatory genes that contribute to the oral ectoderm regulatory state during specification in Strongylocentrotus purpuratus, and show how their spatial expression changes dynamically during development. By means of system wide perturbation analyses we have significantly improved current knowledge of the epistatic relations among the regulatory genes of the oral ectoderm. From these studies there emerge diverse circuitries relating downstream regulatory genes directly and indirectly to Nodal signaling. A key intermediary regulator, the role of which had not previously been discerned, is the not gene. In addition to activating several genes earlier described as targets of Nodal signaling, the not gene product acts to repress other oral ectoderm genes, contributing crucially to the bilateral spatial organization of the embryonic oral ectoderm.  相似文献   

18.
The direct-developing sea urchin species Heliocidaris erythrogramma has a radically modified ontogeny. Along with gains of novel features, its entire ectoderm has been reorganized, resulting in the apparent absence of a differentiated oral ectoderm, a major module present in the pluteus of indirect-developing species, such as H. tuberculata. The restoration of an obvious oral ectoderm in H. erythrogrammaxH. tuberculata hybrids, indicates the action of dominant regulatory factors from the H. tuberculata genome. We sought candidate regulatory genes based on the prediction that they should include genes that govern development of the oral ectoderm in the pluteus, but play different roles in H. erythrogramma. Such genes may have a large effect in the evolution of development. Goosecoid (Gsc), Msx, and the sea urchin Abd-B-like gene (Hox11/13b) are present and expressed in both species and the hybrid embryos. Both Gsc and Msx are oral ectoderm specific in H. tuberculata, and show novel and distinct expression patterns in H. erythrogramma. Gsc assumes a novel ectodermal pattern and Msx shifts to a novel and largely mesodermal pattern. Both Gsc and Msx show a restoration of oral ectoderm expression in hybrids. Hox11/13b is not expressed in oral ectoderm in H. tuberculata, but is conserved in posterior spatial expression among H. tuberculata, H. erythrogramma and hybrids, serving as a control. Competitive RT-PCR shows that Gsc, Msx, and Hox11/13b are under different quantitative and temporal controls in the Heliocidaris species and the hybrids. The implications for the involvement of these genes in the rapid evolution of a direct developing larva are discussed.  相似文献   

19.
The chick dorsal feather-forming dermis originates from the dorsomedial somite and its formation depends primarily on Wnt1 from the dorsal neural tube. We investigate further the origin and specification of dermal progenitors from the medial dermomyotome. This comprises two distinct domains: the dorsomedial lip and a more central region (or intervening zone) that derives from it. We confirm that Wnt1 induces Wnt11 expression in the dorsomedial lip as previously shown, and show using DiI injections that some of these cells, which continue to express Wnt11 migrate under the ectoderm, towards the midline, to form most of the dorsal dermis. Transplantation of left somites to the right side to reverse the mediolateral axis confirms this finding and moreover suggests the presence of an attractive or permissive environment produced by the midline tissues or/and a repellent or inadequate environment by the lateral tissues. By contrast, the dorsolateral dermal cells just delaminate from the surface of the intervening space, which expresses En1. Excision of the axial organs or the ectoderm, and grafting of Wnt1-secreting cells, shows that, although the two populations of dermal progenitors both requires Wnt1 for their survival, the signalling required for their specification differs. Indeed Wnt11 expression relies on dorsal neural tube-derived Wnt1, while En1 expression depends on the presence of the ectoderm. The dorsal feather-forming dermal progenitors thus appear to be differentially regulated by dorsal signals from the neural tube and the ectoderm, and derive directly and indirectly from the dorsomedial lip. As these two dermomyotomal populations are well known to also give rise to epaxial muscles, an isolated domain of the dermomyotome that contains only dermal precursors does not exist and none of the dermomyotomal domains can be considered uniquely as a dermatome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号