首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase B (PKB/Akt) is a regulator of cell survival and apoptosis. To become fully activated, PKB/Akt requires phosphorylation at two sites, threonine 308 and serine 473, in a phosphatidylinositol (PI) 3-kinase-dependent manner. The kinase responsible for phosphorylation of threonine 308 is the PI 3-kinase-dependent kinase-1 (PDK-1), whereas phosphorylation of serine 473 has been suggested to be regulated by PKB/Akt autophosphorylation in a PDK-1-dependent manner. However, the integrin-linked kinase (ILK) has also been shown to regulate phosphorylation of serine 473 in a PI 3-kinase-dependent manner. Whether ILK phosphorylates this site directly or functions as an adapter molecule has been debated. We now show by in-gel kinase assay and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry that biochemically purified ILK can phosphorylate PKB/Akt directly. Co-immunoprecipitation analysis of cell extracts demonstrates that ILK can complex with PKB/Akt as well as PDK-1 and that ILK can disrupt PDK-1/PKB association. The amino acid residue serine 343 of ILK within the activation loop is required for kinase activity as well as for its interaction with PKB/Akt. Mutational analysis of ILK further shows a crucial role for arginine 211 of ILK within the phosphoinositide phospholipid binding domain in the regulation of PKB- serine 473 phosphorylation. A highly selective small molecule inhibitor of ILK activity also inhibits the ability of ILK to phosphorylate PKB/Akt in vitro and in intact cells. These data demonstrate that ILK is an important upstream kinase for the regulation of PKB/Akt.  相似文献   

2.
Antimutagenic activity of aqueous extracts of the South African herbal teas, Aspalathus linearis (rooibos) and Cyclopia spp. (honeybush) was compared with that of Camellia sinensis (black, oolong and green) teas in the Salmonella mutagenicity assay using aflatoxin B(1) (AFB(1)) and 2-acetylaminofluorene (2-AAF) as mutagens. The present study presents the first investigation on antimutagenic properties of C. subternata, C. genistoides and C. sessiliflora. The herbal teas demonstrated protection against both mutagens in the presence of metabolic activation, with the exception of "unfermented" (green/unoxidised) C. genistoides against 2-AAF, which either protected or enhanced mutagenesis depending on the concentration. Antimutagenic activity of "fermented" (oxidised) rooibos was significantly (P<0.05) less than that of Camellia sinensis teas against AFB(1), while for 2-AAF it was less (P<0.05) than that of black tea and similar (P>0.05) to that of oolong and green teas. Antimutagenic activity of unfermented C. intermedia and C. subternata exhibited a similar protection as fermented rooibos against AFB(1). Against 2-AAF, fermented rooibos exhibited similar protective properties than unfermented C. intermedia and C. sessiliflora. Unfermented rooibos was less effective than the C. sinensis teas and fermented rooibos, but had similar (P>0.05) antimutagenicity to that of fermented C. sessiliflora against AFB(1) and fermented C. subternata against 2-AAF. Fermented C. intermedia and C. genistoides exhibited the lowest protective effect against 2-AAF, while fermented C. intermedia exhibited the lowest protection when utilising AFB(1) as mutagen. Aspalathin and mangiferin, major polyphenols in rooibos and Cyclopia spp., respectively, exhibited weak to moderate protective effects when compared to the major green tea catechin, (-)epigallocatechin gallate (EGCG). Antimutagenic activity of selected herbal tea phenolic compounds indicated that they contribute towards (i) observed antimutagenic activity of the aqueous extracts against both mutagens and (ii) enhancement of the mutagenicity of 2-AAF by unfermented C. genistoides. Antimutagenic activity of the South African herbal teas was mutagen-specific, affected by fermentation and plant material, presumably due to changes and variation in phenolic composition.  相似文献   

3.
Aspalathus linearis (Burm.f.) Dahlg. (Fabaceae, Tribe Crotalarieae), an endemic South African fynbos species, is cultivated to produce the well-known herbal tea, rooibos. It is currently sold in more than 37 countries with Germany, the Netherlands, the United Kingdom, Japan and the United States of America representing 86% of the export market in 2010. Its caffeine-free and comparatively low tannin status, combined with its potential health-promoting properties, most notably antioxidant activity, contributes to its popularity. First marketed in 1904 in its fermented (oxidised) form, green rooibos is a new product recently on the market. The utilisation of rooibos has also moved beyond a herbal tea to intermediate value-added products such as extracts for the beverage, food, nutraceutical and cosmetic markets. Its potential as a phytopharmaceutical, shown in recent scientific studies, has not yet been exploited. This review focuses on past and current research aimed at enhancing the value of rooibos herbal tea as a specialised, niche product and expanding its value-adding potential against the background of its traditional use and the current market. The focus falls specifically on aspects such as composition, processing, quality and rooibos as food and potential medicine.  相似文献   

4.
The protein kinase B (PKB)/Akt family of serine kinases is rapidly activated following agonist-induced stimulation of phosphoinositide 3-kinase (PI3K). To probe the molecular events important for the activation process, we employed two distinct models of posttranslational inducible activation and membrane recruitment. PKB induction requires phosphorylation of two critical residues, threonine 308 in the activation loop and serine 473 near the carboxyl terminus. Membrane localization of PKB was found to be a primary determinant of serine 473 phosphorylation. PI3K activity was equally important for promoting phosphorylation of serine 473, but this was separable from membrane localization. PDK1 phosphorylation of threonine 308 was primarily dependent upon prior serine 473 phosphorylation and, to a lesser extent, localization to the plasma membrane. Mutation of serine 473 to alanine or aspartic acid modulated the degree of threonine 308 phosphorylation in both models, while a point mutation in the substrate-binding region of PDK1 (L155E) rendered PDK1 incapable of phosphorylating PKB. Together, these results suggest a mechanism in which 3' phosphoinositide lipid-dependent translocation of PKB to the plasma membrane promotes serine 473 phosphorylation, which is, in turn, necessary for PDK1-mediated phosphorylation of threonine 308 and, consequentially, full PKB activation.  相似文献   

5.
The antimutagenic properties of South African herbal teas were investigated using the Salmonella typhimurium mutagenicity assay. Aqueous extracts of fermented and unfermented rooibos tea (Aspalathus linearis) and honeybush tea (Cyclopia intermedia) both possess antimutagenic activity against 2-acetylaminofluorene (2-AAF) and aflatoxin B(1) (AFB(1))-induced mutagenesis using tester strains TA98 and TA100 in the presence of metabolic activation. A far less inhibitory effect was noticed against the direct acting mutagens, methyl methanesulfonate (MMS), cumolhydroperoxide (CHP), and hydrogen peroxide (H(2)O(2)) using TA102, a strain designed to detect oxidative mutagens and carcinogens. Depending on the mutagen used, the unfermented tea exhibited the highest protective effect. A similar response regarding the protection against mutagenesis was obtained when utilising different variations of the double layer Salmonella assay. The double layer technique proved to be more effective to detect the protective effect of the different tea preparations against the direct acting mutagens. With respect to indirect mutagens, the highest protection was noticed when the carcinogen was metabolically activated in the presence of the tea extract as compared with when the tea extract was incubated in a separate layer with the bacteria. The current data suggest that two mechanisms seem to be involved in the antimutagenicity of the tea extracts towards carcinogens that require metabolic activation: (i) the tea components may interfere with cytochrome P450-mediated metabolism of these mutagens and (ii) the direct interaction between the tea constituents, presumably the polyphenolic compounds, with the promutagens and/or the active mutagenic metabolites. However, the mild and/or lack of protection and in some cases even enhancement of mutagenesis induced by direct acting or oxidative mutagens, provide new perspectives regarding the role of the polyphenolic compounds known to exhibit antioxidant properties, in the protection against mutagenesis in the Salmonella assay. The present study provides the first evidence on the antimutagenic activity of honeybush tea and further evidence on the antimutagenicity of rooibos tea.  相似文献   

6.
Protein kinase B (PKB/Akt) plays a pivotal role in signaling pathways downstream of phosphatidylinositol 3-kinase, regulating fundamental processes such as cell survival, cell proliferation, differentiation, and metabolism. PKB/Akt activation is regulated by phosphoinositide phospholipid-mediated plasma membrane anchoring and by phosphorylation on Thr-308 and Ser-473. Whereas the Thr-308 site is phosphorylated by PDK-1, the identity of the Ser-473 kinase has remained unclear and controversial. The integrin-linked kinase (ILK) is a potential regulator of phosphorylation of PKB/Akt on Ser-473. Utilizing double-stranded RNA interference (siRNA) as well as conditional knock-out of ILK using the Cre-Lox system, we now demonstrate that ILK is essential for the regulation of PKB/Akt activity. ILK knock-out had no effect on phosphorylation of PKB/Akt on Thr-308 but resulted in almost complete inhibition of phosphorylation on Ser-473 and significant inhibition of PKB/Akt activity, accompanied by significant stimulation of apoptosis. The inhibition of PKB/Akt Ser-473 phosphorylation was rescued by kinase-active ILK but not by a kinase-deficient mutant of ILK, suggesting a role for the kinase activity of ILK in the stimulation of PKB/Akt phosphorylation. ILK knock-out also resulted in the suppression of phosphorylation of GSK-3beta on Ser-9 and cyclin D1 expression. These data establish ILK as an essential upstream regulator of PKB/Akt activation.  相似文献   

7.
The potential role of Akt phosphorylation in human cancers   总被引:15,自引:0,他引:15  
Akt/protein kinase B (PKB) is a serine/threonine kinase which is implicated in mediating a variety of biological responses including cell growth, proliferation and survival. Akt is activated by phosphorylation on two critical residues, namely threonine 308 (Thr308) and serine 473 (Ser473). Several studies have found Akt2 to be amplified or overexpressed at the mRNA level in various tumor cell lines and in a number of human malignancies such as colon, pancreatic and breast cancers. Nevertheless, activation of Akt isoforms by phosphorylation appears to be more clinically significant than Akt2 amplification or overexpression. Many studies in the past 4-5 years have revealed a prognostic and/or predictive role of Akt phosphorylation in breast, prostate and non-small cell lung cancer. Several publications suggest a role of phosphorylated Akt also in endometrial, pancreatic, gastric, tongue and renal cancer. However, different types of assays were used in these studies. Before assessment of P-Akt can be incorporated into routine clinical practice, all aspects of the assay methodology will have to be standardized.  相似文献   

8.
Antimutagenic activity of aqueous extracts of the South African herbal teas, Aspalathus linearis (rooibos) and Cyclopia spp. (honeybush) was compared with that of Camellia sinensis (black, oolong and green) teas in the Salmonella mutagenicity assay using aflatoxin B1 (AFB1) and 2-acetylaminofluorene (2-AAF) as mutagens. The present study presents the first investigation on antimutagenic properties of C. subternata, C. genistoides and C. sessiliflora. The herbal teas demonstrated protection against both mutagens in the presence of metabolic activation, with the exception of “unfermented” (green/unoxidised) C. genistoides against 2-AAF, which either protected or enhanced mutagenesis depending on the concentration. Antimutagenic activity of “fermented” (oxidised) rooibos was significantly (P < 0.05) less than that of Camellia sinensis teas against AFB1, while for 2-AAF it was less (P < 0.05) than that of black tea and similar (P > 0.05) to that of oolong and green teas. Antimutagenic activity of unfermented C. intermedia and C. subternata exhibited a similar protection as fermented rooibos against AFB1. Against 2-AAF, fermented rooibos exhibited similar protective properties than unfermented C. intermedia and C. sessiliflora. Unfermented rooibos was less effective than the C. sinensis teas and fermented rooibos, but had similar (P > 0.05) antimutagenicity to that of fermented C. sessiliflora against AFB1 and fermented C. subternata against 2-AAF. Fermented C. intermedia and C. genistoides exhibited the lowest protective effect against 2-AAF, while fermented C. intermedia exhibited the lowest protection when utilising AFB1 as mutagen. Aspalathin and mangiferin, major polyphenols in rooibos and Cyclopia spp., respectively, exhibited weak to moderate protective effects when compared to the major green tea catechin, (−)epigallocatechin gallate (EGCG). Antimutagenic activity of selected herbal tea phenolic compounds indicated that they contribute towards (i) observed antimutagenic activity of the aqueous extracts against both mutagens and (ii) enhancement of the mutagenicity of 2-AAF by unfermented C. genistoides. Antimutagenic activity of the South African herbal teas was mutagen-specific, affected by fermentation and plant material, presumably due to changes and variation in phenolic composition.  相似文献   

9.
The second messenger ceramide (N-alkylsphingosine) has been implicated in a host of cellular processes including growth arrest and apoptosis. Ceramide has been reported to have effects on both protein kinases and phosphatases and may constitute an important component of stress response in various tissues. We have examined in detail the relationship between ceramide signaling and the activation of an important signaling pathway, phosphatidylinositol (PI) 3-kinase and its downstream target, protein kinase B (PKB). PKB activation was observed following stimulation of cells with the cytokine granulocyte-macrophage colony-stimulating factor. Addition of cell-permeable ceramide analogs, C(2)- or C(6)-ceramide, caused a partial loss (50-60%) of PKB activation. This reduction was not a result of decreased PI(3,4,5)P(3) or PI(3,4)P(2) generation by PI 3-kinase. Two residues of PKB (threonine 308 and serine 473) require phosphorylation for maximal PKB activation. Serine 473 phosphorylation was consistently reduced by treatment with ceramide, whereas threonine 308 phosphorylation remained unaffected. In further experiments, ceramide appeared to accelerate serine 473 dephosphorylation, suggesting the activation of a phosphatase. Consistent with this, the reduction in serine 473 phosphorylation was inhibited by the phosphatase inhibitors okadaic acid and calyculin A. Surprisingly, threonine 308 phosphorylation was abolished in cells treated with these inhibitors, revealing a novel mechanism of regulation of threonine 308 phosphorylation. These results demonstrate that PI 3-kinase-dependent kinase 2-catalyzed phosphorylation of serine 473 is the principal target of a ceramide-activated phosphatase.  相似文献   

10.
Mechanical stress is known to modulate fundamental events such as cell life and death. Mechanical stretch in particular has been identified as a positive regulator of proliferation in skin keratinocytes and other cell systems. In the present study it was investigated whether antiapoptotic signaling is also stimulated by mechanical stretch. It was demonstrated that mechanical stretch rapidly induced the phosphorylation of the proto-oncogene protein kinase B (PKB)/Akt at both phosphorylation sites (serine 473/threonine 308) in different epithelial cells (HaCaT, A-431, and human embryonic kidney-293). Blocking of phosphoinositide 3-OH kinase by selective inhibitors (LY-294002 and wortmannin) abrogated the stretch-induced PKB/Akt phosphorylation. Furthermore mechanical stretch stimulated phosphorylation of epidermal growth factor receptor (EGFR) and the formation of EGFR membrane clusters. Functional blocking of EGFR phosphorylation by either selective inhibitors (AG1478 and PD168393) or dominant-negative expression suppressed stretch-induced PKB/Akt phosphorylation. Finally, the angiotensin II type 1 receptor (AT1-R) was shown to induce positive transactivation of EGFR in response to cell stretch. These findings define a novel signaling pathway of mechanical stretch, namely the activation of PKB/Akt by transactivation of EGFR via angiotensin II type 1 receptor. Evidence is provided that stretch-induced activation of PKB/Akt protects cells against induced apoptosis.  相似文献   

11.
Full activation of protein kinase B (PKB, also called Akt) requires phosphorylation on two regulatory sites, Thr-308 in the activation loop and Ser-473 in the hydrophobic C-terminal regulatory domain (numbering for PKB alpha/Akt-1). Although 3'-phosphoinositide-dependent protein kinase 1 (PDK1) has now been identified as the Thr-308 kinase, the mechanism of the Ser-473 phosphorylation remains controversial. As a step to further characterize the Ser-473 kinase, we examined the effects of a range of protein kinase inhibitors on the activation and phosphorylation of PKB. We found that staurosporine, a broad-specificity kinase inhibitor and inducer of cell apoptosis, attenuated PKB activation exclusively through the inhibition of Thr-308 phosphorylation, with Ser-473 phosphorylation unaffected. The increase in Thr-308 phosphorylation because of overexpression of PDK1 was also inhibited by staurosporine. We further show that staurosporine (CGP 39360) potently inhibited PDK1 activity in vitro with an IC(50) of approximately 0.22 microm. These data indicate that agonist-induced phosphorylation of Ser-473 of PKB is independent of PDK1 or PKB activity and occurs through a distinct Ser-473 kinase that is not inhibited by staurosporine. Moreover, our results suggest that inhibition of PKB signaling is involved in the proapoptotic action of staurosporine.  相似文献   

12.
Protein kinase B (PKB/Akt) is a serine-threonine kinase functioning downstream of phosphatidylinositol 3-kinase (PI-3 kinase) in response to mitogen or growth factor stimulation. In several cell types, it plays an important anti-apoptotic role. TPA is a potent regulator of the growth of many different cell types. Here, we detected that TPA could induce cell apoptosis in the gastric cancer cell line, BGC-823. We also found that TPA inhibited the expression of PKB/Akt in a TPA concentration- and time-dependent manner. Furthermore, TPA inhibited the phosphorylation of PKB at Ser473, but did not affect the phosphorylation of Thr308. It only attenuated the expression of PKB/Akt and the phosphorylation of Ser473 in the cell nucleus, whereas it did not change the PKB/Akt distribution in BGC-823 cells. These results suggest that PKB/Akt inhibition by TPA may be the important factor in the mechanism of effect of TPA on gastric cell lines.  相似文献   

13.
Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.  相似文献   

14.
The protein phosphatase inhibitor calyculin A activates PKB/Akt to ~50% of the activity induced by insulin-like growth factor 1 (IGF1) in HeLa cells promoting an evident increased phosphorylation of Ser473 despite the apparent lack of Thr308 phosphorylation of PKB. Nevertheless, calyculin A-induced activation of PKB seems to be dependent on basal levels of Thr308 phosphorylation, since a PDK1-dependent mechanism is required for calyculin A-dependent PKB activation by using embryonic stem cells derived from PDK1 wild-type and knockout mice. Data shown suggest that calyculin A-induced phosphorylation of Ser473 was largely blocked by LY294002 and SB-203580 inhibitors, indicating that both PI3-kinase/TORC2-dependent and SAPK2/p38-dependent protein kinases contributed to phosphorylation of Ser473 in calyculin A-treated cells. Additionally, our results suggest that calyculin A blocks the IGF1-dependent Thr308 phosphorylation and activation of PKB, likely due to an enhanced Ser612 phosphorylation of insulin receptor substrate 1 (IRS1), which can be inhibitory to its activation of PI3-kinase, a requirement for PDK1-induced Thr308 phosphorylation and IGF1-dependent activation of PKB. Our data suggest that PKB activity is most dependent on the level of Ser473 phosphorylation rather than Thr308, but basal levels of Thr308 phosphorylation are a requirement. Additionally, we suggest here that calyculin A regulates the IGF1-dependent PKB activation by controlling the PI3-kinase-associated IRS1 Ser/Thr phosphorylation levels.  相似文献   

15.
This study investigated the expression and activation of Akt/PKB in developing and adult rat uterus. Expression of Akt was observed in uteri from adult ovariectomized and 7–35-day-old rats and no changes were observed in response to in vivo estradiol treatment (1–100 μg/100 g b.w.). To examine the mechanisms of PKB/Akt activation, phosphorylation at Thr308 and Ser473 regulatory sites were studied in uteri. Akt was constitutively phosphorylated on Ser473 residue in the untreated, control uteri, while phosphorylation of Thr308 was observed only after estradiol 17β (E2) treatment. The effects of E2 treatment were age dependent, no response was induced in 11-day-old uteri, while in 28 days and older rats the activation of Akt at both regulatory sites, Ser473 and Thr308, increased, the first response was detected 2 h after treatment, reaching the highest rate at 6 h. The rate of phosphorylation was stronger at Ser473 residue. The results suggest that the regulation of Akt activation at two regulatory sites in rat uteri are different, phosphorylation of Thr308 seems to be entirely estrogen dependent, while the phosphorylation of Ser473 is regulated by other factors as well as estrogen.  相似文献   

16.
Full activation of protein kinase B (PKB/Akt) requires phosphorylation on Thr-308 and Ser-473. It is well established that Thr-308 is phosphorylated by 3-phosphoinositide-dependent kinase-1 (PDK1). Ser-473 phosphorylation is mediated by both mammalian target of rapamycin-rictor complex (mTORC2) and DNA-dependent protein kinase (DNA-PK) depending on type of stimulus. However, the physiological role of DNA-PK in the regulation of PKB phosphorylation remains to be established. To address this, we analyzed basal, insulin-induced, and DNA damage-induced PKB Ser-473 phosphorylation in DNA-PK catalytic subunit-null DNA-PKcs(-/-) mice. Our results revealed that DNA-PK is required for DNA damage-induced phosphorylation but dispensable for insulin- and growth factor-induced PKB Ser-473 phosphorylation. Moreover, DNA-PKcs(-/-) mice showed a tissue-specific increase in basal PKB phosphorylation. In particular, persistent PKB hyperactivity in the thymus apparently contributed to spontaneous lymphomagenesis in DNA-PKcs(-/-) mice. Significantly, these tumors could be prevented by deletion of PKBalpha. These findings reveal stimulus-specific regulation of PKB activation by specific upstream kinases and provide genetic evidence of PKB deregulation in DNA-PKcs(-/-) mice.  相似文献   

17.
Dual regulation of platelet protein kinase B   总被引:8,自引:0,他引:8  
Protein kinase B (PKB) is a serine/threonine kinase that is activated by growth hormones and implicated in prevention of apoptosis, glycogen metabolism, and glucose uptake. A key enzyme in PKB activation is phosphatidylinositide 3-kinase (PI-3K), which triggers the dual phosphorylation of PKB by phosphatidylinositol-dependent kinases (PDKs). Here we report that the major PKB subtype in platelets is PKBalpha, which is activated by phosphorylation of Thr(308) and Ser(473) and has a constitutively phosphorylated Thr(450) that does not contribute to PKB activation. alpha-Thrombin and thrombopoietin activate PKBalpha via PI-3K and trigger the concurrent phosphorylation of Thr(308) (via PDK1) and Ser(473) (via a not yet identified PDK2). In addition, alpha-thrombin activates a PI-3K-independent pathway involving phospholipase Cbeta and calcium-dependent protein kinase C subtypes (PKCalpha/beta). This route is specific for phosphorylation of Ser(473) and can be initiated by direct PKC activation with phorbol ester or purified active PKC catalytic fragment in platelet lysate. Different degrees of Ser(473) and Thr(308) phosphorylation correlate with different degrees of enzyme activity. These data reveal a PI-3K-independent PKB activation in which PKCalpha/beta regulates the phosphorylation of Ser(473) in PKBalpha. The independent control of the two phosphorylation sites may contribute to fine regulation of PKBalpha activity.  相似文献   

18.
Protein kinase B (PKB/Akt) has been well established as an important signaling intermediate, and its deregulation has been implicated in the development of human cancer and diabetes (reviewed in). Full activation of PKB requires phosphorylation on residues Thr308 and Ser473. While the Thr308 kinase, named 3-phosphoinositide-dependent kinase-1 (PDK1), has been extensively characterized (reviewed in ), the identity of the Ser473 kinase remains unclear. We have focused our study on the plasma membrane (PM) fraction because membrane localization is sufficient to activate PKB, and this suggests that PKB upstream kinases are constitutively active at the membrane. Here, we report the identification of a constitutively active PKB Ser473 kinase activity enriched in buoyant, detergent-insoluble plasma membrane rafts that are distinct from the cytosolic distribution of PKB and PDK1. This Ser473 kinase activity was released from the membrane by high salt, and gel filtration analysis showed that the kinase responsible is present in a large complex of >500 kDa. Two major phosphoproteins and integrin-linked kinase (ILK) were detected in partially purified PKB Ser473 kinase preparations. In contrast to previous observations, however, ILK immunoprecipitates did not retain Ser473 kinase activity. Thus, we have identified a novel raft-associated PKB Ser473 kinase, implicating a role for lipid rafts in PKB signaling.  相似文献   

19.
Previous studies have demonstrated antidiabetic effects for rooibos (Aspalathus linearis) and aspalathin (ASP), one of its main polyphenols. Rooibos, an endemic plant of South Africa, is well-known for its use as herbal tea. Green (‘unfermented’) rooibos has been shown to contain more ASP than ‘fermented’ rooibos tea, currently the major product. In the present study, we investigated the antidiabetic effect of green rooibos extract (GRE) through studies on glucose uptake in L6 myotubes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic KK-Ay mice. GRE increased glucose uptake under insulin absent condition and induced phosphorylation of 5′-adenosine monophosphate-activated protein kinase (AMPK) in L6 myotubes as previously demonstrated for ASP. In addition to AMPK, GRE also promoted phosphorylation of Akt, another promoter of glucose transporter 4 (GLUT4) translocation, in L6 myotubes unlike ASP, suggesting an involvement of GRE component(s) other than ASP in Akt phosphorylation. Promotion of GLUT4 translocation to the plasma membrane by GRE in L6 myotubes was demonstrated by Western blotting analysis. GRE suppressed the advanced glycation end products (AGEs)-induced increase in ROS levels in RIN-5F pancreatic β-cells. Subchronic feeding with GRE suppressed the increase in fasting blood glucose levels in type 2 diabetic model KK-Ay mice. These in vitro and in vivo results strongly suggest that GRE has antidiabetic potential through multiple modes of action.  相似文献   

20.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号