首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The expression and secretion signals of the Sep protein from Lactobacillus fermentum BR11 were used to direct export of two peptidoglycan hydrolases by Lb. fermentum BR11, Lactobacillus rhamnosus GG, Lactobacillus plantarum ATCC 14917 and Lactococcus lactis MG1363. The production levels, hydrolytic and bacteriocidal activities of the Listeria monocytogenes bacteriophage N-acetylmuramoyl-l-alanine amidase endolysin Ply511 and the glycylglycine endopeptidase lysostaphin were examined. Buffering of the growth media to a neutral pH allowed detection of Ply511 and lysostaphin peptidoglycan hydrolytic activity from all lactic acid bacteria. It was found that purified Ply511 has a pH activity range similar to that of lysostaphin with both enzymes functioning optimally under alkaline conditions. Supernatants from lactobacilli expressing lysostaphin reduced viability of methicillin resistant Staphylococcus aureus (MRSA) by approximately 8 log(10) CFU/ml compared to controls. However, supernatants containing Ply511 were unable to control L. monocytogenes growth. In coculture experiments, both Lb. plantarum and Lb. fermentum synthesizing lysostaphin were able to effectively reduce MRSA cell numbers by >7.4 and 1.7 log(10)CFU/ml, respectively, while lactic acid bacteria secreting Ply511 were unable to significantly inhibit the growth of L. monocytogenes. Our results demonstrate that lysostaphin and Ply511 can be expressed in an active form from different lactic acid bacteria and lysostaphin showed superior killing activity. Lactobacilli producing lysostaphin may have potential for in situ biopreservation in foodstuffs or for prevention of S. aureus infections.  相似文献   

3.
Bioinformatic analysis of lp_2714 from Lactobacillus plantarum WCFS1 demonstrates that it encodes an EAL-domain protein associated with a membrane targeting signal-sequence. Comparison of the predicted primary amino-acid sequence of Lp_2714 shows that it lacks critical catalytic residues and heterologous expression has determined that it does not encode a functional phosphodiesterase. We designate Lp_2714 as a class-3 EAL domain protein probably involved in regulating polysaccharide synthesis on the cell surface the cell.  相似文献   

4.
Folate overproduction can serve as a mode of resistance against the folate antagonist methotrexate in Lactobacillus plantarum WCFS1. When compared with a wild-type control strain, an engineered high folate-producing strain was found to be insensitive to methotrexate. The growth rate and the viable count of the folate-overproducing L. plantarum strain were not significantly affected by the presence of methotrexate in the growth medium.  相似文献   

5.
The concentrations of gamma-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg(-1). Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

6.
The gene chi, coding for a GH18 chitinase from the Gram-positive bacterium Bacillus licheniformis DSM13 (ATCC 14580), was cloned into the inducible lactobacillal expression vectors pSIP403 and pSIP409, derived from the sakacin-P operon of Lactobacillus sakei, and expressed in the host strain Lactobacillus plantarum WCFS1. Both the complete chi gene including the original bacillal signal sequence as well as the mature chi gene were compared, however, no extracellular chitinase activity was detected with any of the constructs. The chitinase gene was expressed intracellularly as an active enzyme with these different systems, at levels of approximately 5mg of recombinant protein per litre of cultivation medium. Results obtained for the two different expression vectors that only differ in the promoter sequence were well comparable. To further verify the suitability of this expression system, recombinant, His-tagged chitinase Chi was purified from cell extracts of L. plantarum and characterised. The monomeric 65-kDa enzyme can degrade both chitin and chitosan, and shows properties that are very similar to those reported for the native chitinase purified from other B. licheniformis isolates. It shows good thermostability (half lives of stability of 20 and 8.4 days at 37 and 50°C, respectively), and good stability in the pH range of 5-10. The results presented lead the way to overproduction of chitinase in a food-grade system, which is of interest for the food and feed industry.  相似文献   

7.
Lactobacillus plantarum is a frequently encountered inhabitant of the human intestinal tract, and some strains are marketed as probiotics. Their ability to adhere to mannose residues is a potentially interesting characteristic with regard to proposed probiotic features such as colonization of the intestinal surface and competitive exclusion of pathogens. In this study, the variable capacity of 14 L. plantarum strains to agglutinate Saccharomyces cerevisiae in a mannose-specific manner was determined and subsequently correlated with an L. plantarum WCFS1-based genome-wide genotype database. This led to the identification of four candidate mannose adhesin-encoding genes. Two genes primarily predicted to code for sortase-dependent cell surface proteins displayed a complete gene-trait match. Their involvement in mannose adhesion was corroborated by the finding that a sortase (srtA) mutant of L. plantarum WCFS1 lost the capacity to agglutinate S. cerevisiae. The postulated role of these two candidate genes was investigated by gene-specific deletion and overexpression in L. plantarum WCFS1. Subsequent evaluation of the mannose adhesion capacity of the resulting mutant strains showed that inactivation of one candidate gene (lp_0373) did not affect mannose adhesion properties. In contrast, deletion of the other gene (lp_1229) resulted in a complete loss of yeast agglutination ability, while its overexpression quantitatively enhanced this phenotype. Therefore, this gene was designated to encode the mannose-specific adhesin (Msa; gene name, msa) of L. plantarum. Domain homology analysis of the predicted 1,000-residue Msa protein identified known carbohydrate-binding domains, further supporting its role as a mannose adhesin that is likely to be involved in the interaction of L. plantarum with its host in the intestinal tract.  相似文献   

8.
There is growing interest in the beneficial effects of Lactobacillus plantarum on human health. The genome of L. plantarum WCFS1, first sequenced in 2001, was resequenced using Solexa technology. We identified 116 nucleotide corrections and improved function prediction for nearly 1,200 proteins, with a focus on metabolic functions and cell surface-associated proteins.  相似文献   

9.
Lactobacillus plantarum is a versatile and flexible species that is encountered in a variety of niches and can utilize a broad range of fermentable carbon sources. To assess if this versatility is linked to a variable gene pool, microarrays containing a subset of small genomic fragments of L. plantarum strain WCFS1 were used to perform stringent genotyping of 20 strains of L. plantarum from various sources. The gene categories with the most genes conserved in all strains were those involved in biosynthesis or degradation of structural compounds like proteins, lipids, and DNA. Conversely, genes involved in sugar transport and catabolism were highly variable between strains. Moreover, besides the obvious regions of variance, like prophages, other regions varied between the strains, including regions encoding plantaricin biosynthesis, nonribosomal peptide biosynthesis, and exopolysaccharide biosynthesis. In many cases, these variable regions colocalized with regions of unusual base composition. Two large regions of flexibility were identified between 2.70 and 2.85 and 3.10 and 3.29 Mb of the WCFS1 chromosome, the latter being close to the origin of replication. The majority of genes encoded in these variable regions are involved in sugar metabolism. This functional overrepresentation and the unusual base composition of these regions led to the hypothesis that they represented lifestyle adaptation regions in L. plantarum. The present study consolidates this hypothesis by showing that there is a high degree of gene content variation among L. plantarum strains in genes located in these regions of the WCFS1 genome. Interestingly, based on our genotyping data L. plantarum strains clustered into two clearly distinguishable groups, which coincided with an earlier proposed subdivision of this species based on conventional methods.  相似文献   

10.
Fluorescent in situ hybridisation (FISH) with a 16S ribosomal RNA (rRNA)-targeted oligonucleotide probe, Eub338, could be used to estimate the in situ activity of Lactobacillus plantarum WCFS1 in exponentially growing cells. However, L. plantarum is capable of growth to very high cell densities, and the properties of the L. plantarum cell envelope prevented effective entry of the fluorescent oligonucleotide probe into the cells at later stages of growth at high cell densities. Total rRNA measurements of cells isolated at different growth stages showed maximal amounts of RNA (8.77+/-0.8 fg) per cell at the early stationary phase and confirmed the effectiveness of FISH for accurate activity measurement in exponentially growing cells.  相似文献   

11.
12.
13.
Aims: To test seven selected putative signal peptides from Lactobacillus plantarum WCFS1 in terms of their ability to drive secretion of two model proteins in Lact. plantarum, and to compare the functionality of these signal peptides with that of well‐known heterologous signal peptides (Usp45, M6). Methods and Results: Signal peptide functionality was assessed using a series of modular derivatives of the pSIP vectors for peptide pheromone‐controlled high‐level gene expression in lactobacilli. Several of the constructs with homologous signal peptides yielded similar or higher reporter protein activities than constructs with heterologous signal peptides. Two of the homologous signal peptides (Lp_0373 and Lp_0600) appeared as especially promising candidates for directing secretion, as they were among the best performing with both reporter proteins. Conclusions: We have identified homologous signal peptides for high‐level secretion of heterologous proteins in Lact. plantarum. With the model proteins, some of these performed better than commonly used heterologous signal peptides. Significance and Impact of the Study: The homologous signal peptides tested out, in this study, could be useful in food‐grade systems for secretion of interesting proteins in Lact. plantarum. The constructed modular secretion vectors are easily accessible for rapid signal peptide screening.  相似文献   

14.
Aims:  To characterize the adhesion molecule of Lactobacillus plantarum LA 318 that shows high adhesion to human colonic mucin (HCM).
Methods and Results:  The adhesion test used the BIACORE assay where PBS-washed bacterial cells showed a significant decrease in adherence to HCM than distilled water-washed cells. A component in the PBS wash fraction adhered to the HCM and a main protein was detected as a c . 40-kDa band using SDS-PAGE. Using homology comparisons of the N-terminal amino acid sequences compared with sequence databases, this protein was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The DNA sequence of LA 318 GAPDH was 100% identical to the GAPDH ( gapB ) of L. plantarum WCFS1. The purified GAPDH adhered to HCM.
Conclusions:  We found the adhesin of L. plantarum LA 318 to HCM in its culture PBS wash fraction. The molecule was identified as GAPDH. Because LA 318 possesses the same adhesin as many pathogens, the lactobacilli GAPDH may compete with pathogens infecting the intestine.
Significance and Impact of the Study:  This is the first report showing GAPDH expressed on the cell surface of lactobacilli adheres to mucin suggesting L. plantarum LA 318 adheres to HCM using GAPDH binding activity to colonize the human intestinal mucosa.  相似文献   

15.
The complete genome sequences of the lactic acid bacteria (LAB), Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus johnsonii were used to compare location, sequence, organisation, and regulation of the ribosomal RNA (rrn) operons. All rrn operons of the examined LAB diverge from the origin of replication, which is compatible with their efficient expression. All operons show a common organisation of 5'-16S-23S-5S-3' structure, but differ in the number, location and specificity of the tRNA genes. In the 16S-23S intergenic spacer region, two of the five rrn operons of Lb. plantarum and three of the six of Lb. johnsonii contain tRNA-ala and tRNA-ile genes, while L. lactis has a tRNA-ala gene in all six operons. The number of tRNA genes following the 5S rRNA gene ranges up to 14, 16, and 21 for L. lactis, Lb. johnsonii and Lb. plantarum, respectively. The tRNA gene complements are similar to each other and to those of other bacteria. Micro-heterogeneity was found within the rRNA structural genes and spacer regions of each strain. In the rrn operon promoter regions of Lb. plantarum and L. lactis marked differences were found, while the promoter regions of Lb. johnsonii showed a similar tandem promoter structure in all operons. The rrn promoters of L. lactis show either a single or a tandem promoter structure. All promoters of Lb. plantarum contain two or three -10 and -35 regions, of which either zero to two were followed by an UP-element. The Lb. plantarum rrnA, rrnB, and rrnC promoter regions display similarity to the rrn promoter structure of Esherichia coli. Differences in regulation between the five Lb. plantarum promoters were studied using a low copy promoter-probe plasmid. Taking copy number and growth rate into account, a differential expression over time was shown. Although all five Lb. plantarum rrn promoters are significantly different, this study shows that their activity was very similar under the circumstances tested. An active promoter was also identified within the Lb. plantarum rrnC operon preceding a cluster of 17 tRNA genes.  相似文献   

16.
In this study, the stimulatory effects of different lactic acid bacteria strains, and their subcellular fractions, on the THP-1 cell line were evaluated. Lactobacillus plantarum was found in particular to induce high levels of IL-23p19 mRNA, but it moderately induced TNF-alpha production. IL-10 production was not entirely affected by L. plantarum stimulation. When subcellular fractions of L. plantarum were used to treat THP-1 cells, IL-23p19 mRNA expression was enhanced in a dose-responsive manner, specifically by lipoteichoic acid (LTA). The cotreatment of THP-1 cells by both L. plantarum and Staphylococcus aureus LTA resulted in decreased IL-10 production when compared with cells treated by S. aureus LTA alone. Taken together, these data suggest that LTA isolated from L. plantarum elicits stimulatory effects upon the expression of IL-23p19 and inhibitory effects on pathogen-mediated IL-10 production.  相似文献   

17.
Functional analysis of three plasmids from Lactobacillus plantarum   总被引:2,自引:0,他引:2  
Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism. The host range of the pWCFS101 replicon includes Lactobacillus species and Lactococcus lactis, while that of the pWCFS102 replicon also includes Carnobacterium maltaromaticum and Bacillus subtilis. The larger plasmid is predicted to replicate via the theta-type mechanism. The host range of its replicon seems restricted to L. plantarum. Cloning vectors were constructed based on the replicons of all three plasmids. Plasmid pWCFS103 was demonstrated to be a conjugative plasmid, as it could be transferred to L. plantarum NC8. It confers arsenate and arsenite resistance, which can be used as selective markers.  相似文献   

18.
The promoter-like sequence P15 that was previously cloned from the chromosome of Lactobacillus acidophilus ATCC 4356 is active in Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus acidophilus, and Escherichia coli, but not in Lactococcus lactis. N-methyl-N-nitroso-N-guanidine (MNNG) mutagenesis of P15 was used to select for a promoter active in L. lactis MG1363. Molecular analysis of the mutated promoter (designated P16) revealed a 90 bp deletion and a T-->A transversion. This deletion, in combination with the addition to the transversion, created a promoter with putative -35 and -10 hexamers identical to the consensus promoter sequence found in E. coli and Bacillus subtilis vegetative promoters. The activity of P16 was measured by its ability to promote chloramphenicol resistance in different bacteria when inserted in the promoter-probe plasmid pBV5030 (designated pLA16). The MIC of chloramphenicol in L. lactis, L. reuteri, L. plantarum, E. coli, and L. acidophilus harbouring pLA16 were 30, 170, 180, > 500, and 3 micrograms/mL, respectively. This represents an increase in promoter activity compared to P15 in L. reuteri of 3-fold, in L. plantarum of 9-fold, and in E. coli of at least 2.5-fold, but a decrease in L. acidophilus of 7-fold.  相似文献   

19.
Development of a minimal growth medium for Lactobacillus plantarum   总被引:1,自引:0,他引:1  
Aim:  A medium with minimal requirements for the growth of Lactobacillus plantarum WCFS was developed. The composition of the minimal medium was compared to a genome-scale metabolic model of L. plantarum .
Methods and Results:  By repetitive single omission experiments, two minimal media were developed: PMM5 (true minimal medium) and PMM7 [a pseudominimal medium, supporting proper biomass formation of 350 mg l−1 dry weight (DW)]. The specific growth rate of L. plantarum on PMM7 was found to be 50% and 63% lower when compared to growth on established growth media (chemically defined medium and MRS, respectively). Using a genome-scale metabolic model of L. plantarum , it was predicted that PMM5 and PMM7 would not support the growth of L. plantarum . This is because the biosynthesis of para- aminobenzoic acid ( p ABA) was predicted to be essential for growth. The discrepancy in simulated growth and experimental growth on PMM7 was further investigated for p ABA; a molecule which plays an important role in folate production. The growth performance and folate production were determined on PMM7 in the presence and absence of p ABA. It was found that a 12 000-fold reduction in folate pools exerted no influence on formation of biomass or growth rate of L. plantarum cultures when grown in the absence of p ABA.
Conclusion:  Largely reduced folate production pools do not have an effect on the growth of L. plantarum , showing that L. plantarum makes folate in a large excess.
Significance and Impact of the study:  These experiments illustrate the importance of combining genome-scale metabolic models with growth experiments on minimal media.  相似文献   

20.
T Baba  O Schneewind 《The EMBO journal》1996,15(18):4789-4797
Microbial organisms secrete antibiotics that cause the selective destruction of specific target cells. Although the mode of action is known for many antibiotics, the mechanisms by which these molecules are directed specifically to their target cells hitherto have not been described. Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that cleaves staphylococcal peptidoglycans in general but that is directed specifically to Staphylococcus aureus target cells. The sequence element sufficient for the binding of the bacteriocin as well as of hybrid indicator proteins to the cell wall of S.aureus consisted of 92 C-terminal lysostaphin residues. Targeting to the cell wall of S.aureus occurred either when the hybrid indicator molecules were added externally to the bacteria or when they were synthesized and exported from their cytoplasm by an N-terminal leader peptide. A lysostaphin molecule lacking the C-terminal targeting signal was enzymatically active but had lost its ability to distinguish between S.aureus and S.simulans cells, indicating that this domain functions to confer target cell specificity to the bacteriolytic molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号