首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P190A and p190B Rho GTPase activating proteins (GAPs) are essential genes that have distinct, but overlapping roles in the developing nervous system. Previous studies from our laboratory demonstrated that p190B is required for mammary gland morphogenesis, and we hypothesized that p190A might have a distinct role in the developing mammary gland. To test this hypothesis, we examined mammary gland development in p190A-deficient mice. P190A expression was detected by in situ hybridization in the developing E14.5 day embryonic mammary bud and within the ducts, terminal end buds (TEBs), and surrounding stroma of the developing virgin mammary gland. In contrast to previous results with p190B, examination of p190A heterozygous mammary glands demonstrated that p190A deficiency disrupted TEB morphology, but did not significantly delay ductal outgrowth indicating haploinsufficiency for TEB development. To examine the effects of homozygous deletion of p190A, embryonic mammary buds were rescued by transplantation into the cleared fat pads of SCID/Beige mice. Complete loss of p190A function inhibited ductal outgrowth in comparison to wildtype transplants (51% vs. 94% fat pad filled). In addition, the transplantation take rate of p190A deficient whole gland transplants from E18.5 embryos was significantly reduced compared to wildtype transplants (31% vs. 90%, respectively). These results suggest that p190A function in both the epithelium and stroma is required for mammary gland development. Immunostaining for p63 demonstrated that the myoepithelial cell layer is disrupted in the p190A deficient glands, which may result from the defective cell adhesion between the cap and body cell layers detected in the TEBs. The number of estrogen- and progesterone receptor-positive cells, as well as the expression levels of these receptors was increased in p190A deficient outgrowths. These data suggest that p190A is required in both the epithelial and stromal compartments for ductal outgrowth and that it may play a role in mammary epithelial cell differentiation.  相似文献   

2.
Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a RhoGAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time-lapse microscopy. In normal cell division activated Rho accumulated at the cell equator in early anaphase and in the contractile ring, where it co-localized with p190. Real-time movies revealed that cells expressing elevated levels of p190 exhibited multiple cycles of abnormal CF site selection and ingression/regression, which resulted in failed or prolonged cytokinesis. This was accompanied by mislocalization of active Rho at the aberrant CF sites. Quantified data revealed that in contrast to ECT2 and dominate negative p190 (Y1283Ap190), which resulted in hyper-activated Rho, Rho activity in the CF was reduced by wild type p190 in a dose-dependent manner. These results suggest that p190 regulates cytokinesis through modulation of RhoGTP levels, thereby affecting CF specification site selection and subsequent ring contraction.  相似文献   

3.
The precise biological role of Thy-1, a glycophosphatidyl-inositol (GPI)-linked cell surface glycoprotein in non-caveolar lipid raft microdomains, remains enigmatic. Evidence suggests that Thy-1 affects intracellular signaling through src-family protein kinases, and modulates adhesive and migratory events, such as thymocyte adhesion and neurite extension. Primary fibroblasts sorted based on presence or absence of cell surface Thy-1 display strikingly distinct morphologies and differ with respect to production of and response to cytokines and growth factors. It is unclear the extent to which Thy-1 mediates these differences. Findings reported here indicate a novel role for Thy-1 in regulating the activity of Rho GTPase, a critical regulator of cellular adhesion and cytoskeletal organization. Endogenous or heterologous Thy-1 expression promotes focal adhesion and stress fiber formation, characteristic of increased Rho GTPase activity, and inhibits migration. Immunoblotting following transfection of RFL6 fibroblasts with Thy-1 demonstrates that Thy-1 expression inhibits src-family protein tyrosine kinase (SFK) activation, resulting in decreased phosphorylation of p190 Rho GTPase-activating protein (GAP). This results in a net increase in active Rho, and increased stress fibers and focal adhesions. We therefore conclude that Thy-1 surface expression regulates fibroblast focal adhesions, cytoskeletal organization and migration by modulating the activity of p190 RhoGAP and Rho GTPase.  相似文献   

4.
Systemic metastasis is the dissemination of cancer cells from the primary tumor to distant organs and is the primary cause of death in cancer patients. How do cancer cells leave the primary tumor mass? The ability of the tumor cells to form different types of actin-rich protrusions including invasive protrusions (invadopodia) and locomotory protrusions (lamellipodia [2D] or pseudopodia [3D]), facilitate the invasion and dissemination of the tumor cells. Rho-family of p21 small GTPases plays a direct role in regulating the actin dynamics in these intracellular compartments. Recent studies have shown that the signaling molecules including RhoC/p190RhoGEF/p190RhoGAP acts as a “molecular compass” in order to direct the spatial and temporal dynamics of the formation of these invasive and locomotory protrusions leading to efficient invasion.  相似文献   

5.
Systemic metastasis is the dissemination of cancer cells from the primary tumor to distant organs and is the primary cause of death in cancer patients. How do cancer cells leave the primary tumor mass? The ability of the tumor cells to form different types of actin-rich protrusions including invasive protrusions (invadopodia) and locomotory protrusions (lamellipodia [2D] or pseudopodia [3D]), facilitate the invasion and dissemination of the tumor cells. Rho-family of p21 small GTPases plays a direct role in regulating the actin dynamics in these intracellular compartments. Recent studies have shown that the signaling molecules including RhoC/p190RhoGEF/p190RhoGAP acts as a “molecular compass” in order to direct the spatial and temporal dynamics of the formation of these invasive and locomotory protrusions leading to efficient invasion.  相似文献   

6.
Products resulting from oxidation of cell membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent protective effects against lung endothelial cell (EC) barrier dysfunction caused by pathologically relevant mechanical forces and inflammatory agents. These effects were linked to enhancement of peripheral cytoskeleton and cell adhesion interactions mediated by small GTPase Rac and inhibition of Rho-mediated barrier-disruptive signaling. However, the mechanism of OxPAPC-induced, Rac-dependent Rho downregulation critical for vascular barrier protection remains unclear. This study tested the hypothesis that Rho negative regulator p190RhoGAP is essential for OxPAPC-induced lung barrier protection against ventilator-induced lung injury (VILI), and investigated potential mechanism of p190RhoGAP targeting to adherens junctions (AJ) via p120-catenin. OxPAPC induced peripheral translocation of p190RhoGAP, which was abolished by knockdown of Rac-specific guanine nucleotide exchange factors Tiam1 and Vav2. OxPAPC also induced Rac-dependent tyrosine phosphorylation and association of p190RhoGAP with AJ protein p120-catenin. siRNA-induced knockdown of p190RhoGAP attenuated protective effects of OxPAPC against EC barrier compromise induced by thrombin and pathologically relevant cyclic stretch (18% CS). In vivo, p190RhoGAP knockdown significantly attenuated protective effects of OxPAPC against ventilator-induced lung vascular leak, as detected by increased cell count and protein content in the bronchoalveolar lavage fluid, and tissue neutrophil accumulation in the lung. These results demonstrate for the first time a key role of p190RhoGAP for the vascular endothelial barrier protection in VILI.  相似文献   

7.
p190RhoGAP-A (p190) is a GTPase-activating protein known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of Rho intrinsic GTPase activity. We have previously shown that p190 protein levels are cell cycle-regulated, decreasing in mitosis, and that this decrease is mediated by the ubiquitin-proteasome pathway. In addition, overexpression of p190 results in decreased RhoGTP levels at the cleavage furrow during cytokinesis, p190 and the RhoGEF Ect2 play opposing roles in cytokinesis, and sustained levels of p190 in mitosis are associated with cytokinesis failure, all findings that suggest but do not directly demonstrate that completion of cytokinesis is dependent on reduced levels of p190. Here we report, using an RNAi reconstitution approach with a degradation-resistant mutant, that decreased p190 levels are required for successful cytokinesis. We also show that the multinucleation phenotype is dependent on p190 RhoGAP activity, determine that the N-terminal GBDS1 region is necessary and sufficient for p190 mitotic ubiquitination and degradation, and identify four N-terminal residues as necessary for the degradation of p190 in mitosis. Our data indicate that in addition to activation of RhoGEF(s), reduction of RhoGAP (p190) is a critical mechanism by which increased RhoGTP levels are achieved in late mitosis, thereby ensuring proper cell division.  相似文献   

8.
The central arbiter of cell fate in response to DNA damage is p53, which regulates the expression of genes involved in cell cycle arrest, survival and apoptosis. Although many responses initiated by DNA damage have been characterized, the role of actin cytoskeleton regulators is largely unknown. We now show that RhoC and LIM kinase 2 (LIMK2) are direct p53 target genes induced by genotoxic agents. Although RhoC and LIMK2 have well-established roles in actin cytoskeleton regulation, our results indicate that activation of LIMK2 also has a pro-survival function following DNA damage. LIMK inhibition by siRNA-mediated knockdown or selective pharmacological blockade sensitized cells to radio- or chemotherapy, such that treatments that were sub-lethal when administered singly resulted in cell death when combined with LIMK inhibition. Our findings suggest that combining LIMK inhibitors with genotoxic therapies could be more efficacious than single-agent administration, and highlight a novel connection between actin cytoskeleton regulators and DNA damage-induced cell survival mechanisms.  相似文献   

9.
Role of p120 Ras-GAP in directed cell movement   总被引:1,自引:0,他引:1  
We have used cell lines deficient in p120 Ras GTPase activating protein (Ras-GAP) to investigate the roles of Ras-GAP and the associated p190 Rho-GAP (p190) in cell polarity and cell migration. Cell wounding assays showed that Ras-GAP-deficient cells were incapable of establishing complete cell polarity and migration into the wound. Stimulation of mutant cells with growth factor rescued defects in cell spreading, Golgi apparatus fragmentation, and polarized vesicular transport and partially rescued migration in a Ras-dependent manner. However, for directional movement, the turnover of stress fibers and focal adhesions to produce an elongate morphology was dependent on the constitutive association between Ras-GAP and p190, independent of Ras regulation. Disruption of the phosphotyrosine-mediated Ras-GAP/p190 complex by microinjecting synthetic peptides derived from p190 sequences in wild-type cells caused a suppression of actin filament reorientation and migration. From these observations we suggest that although Ras-GAP is not directly required for motility per se, it is important for cell polarization by regulating actin stress fiber and focal adhesion reorientation when complexed with 190. This observation suggests a specific function for Ras-GAP separate from Ras regulation in cell motility.  相似文献   

10.
Podosome formation in vascular smooth muscle cells is characterized by the recruitment of AFAP-110, p190RhoGAP, and cortactin, which have specific roles in Src activation, local down-regulation of RhoA activity, and actin polymerization, respectively. However, the molecular mechanism that underlies their specific recruitment to podosomes remains unknown. The scaffold protein Tks5 is localized to podosomes in Src-transformed fibroblasts and in smooth muscle cells, and may serve as a specific recruiting adapter for various components during podosome formation. We show here that induced mislocalization of Tks5 to the surface of mitochondria leads to a major subcellular redistribution of AFAP-110, p190RhoGAP, and cortactin, and to inhibition of podosome formation. Analysis of a series of similarly mistargeted deletion mutants of Tks5 indicates that the fifth SH3 domain is essential for this recruitment. A Tks5 mutant lacking the PX domain also inhibits podosome formation and induces the redistribution of AFAP-110, p190RhoGAP, and cortactin to the perinuclear area. By expressing a catalytically inactive point mutant and by siRNA-mediated expression knock-down we also provide evidence that p190RhoGAP is required for podosome formation. Together our findings demonstrate that Tks5 plays a central role in the recruitment of AFAP-110, p190RhoGAP, and cortactin to drive podosome formation.  相似文献   

11.
Analysis of C3H10T1/2 murine fibroblasts overexpressing wild type and dominant negative variants of c-Src has demonstrated a requirement for c-Src in EGF-induced mitogenesis. Correlating with the ability of c-Src variants to potentiate or inhibit EGF-dependent DNA synthesis is the phosphotyrosine content of multiple cellular proteins, including p190- RhoGAP, a protein thought to regulate growth factor-induced actin cytoskeleton remodeling by modulating the activity of the small GTP binding protein, Rho. Because the in vivo phosphotyrosine content of p190 varies with the level of active c-Src and not with EGF treatment, p190 is considered to be a preferred substrate of c-Src. To determine whether tyrosyl phosphorylation of p190 (by c-Src) could influence EGF- dependent actin remodeling, we used conventional and confocal immunofluorescence microscopy to examine the intracellular distribution of p190, actin, and p120RasGAP in EGF-stimulated or unstimulated 10T1/2 Neo control cells and cells that stably overexpress wild-type (K+) or kinase-defective (K-) c-Src. We found that in all cell lines, EGF induced a rapid and transient condensation of p190 and RasGAP into cytoplasmic, arclike structures. However, in K+ cells the rate of appearance and number of cells exhibiting arcs increased when compared with control cells. Conversely, K- cells exhibited delayed arc formation and a reduction in number of cells forming arcs. EGF-induced actin stress fiber disassembly and reassembly occurred with the same kinetics and frequency as did p190 and RasGAP rearrangements in all three cell lines. These results, together with the documented Rho-GAP activity intrinsic to p190 and the ability of Rho to modulate actin stress fiber formation, suggest that c-Src regulates EGF-dependent actin cytoskeleton reorganization through phosphorylation of p190.  相似文献   

12.
Fyn is a member of the Src-family protein tyrosine kinases and plays important roles in both neurons and oligodendrocytes. Here we report association of Fyn with p250GAP, a RhoGAP protein that is expressed predominantly in brain. p250GAP interacts with Fyn both in vitro and in vivo. p250GAP is tyrosine phosphorylated by Fyn when co-expressed in HEK293T cells. This phosphorylation appears to enhance the interaction between p250GAP and Fyn. Furthermore, the level of tyrosine phosphorylation of p250GAP increases upon differentiation of the oligodendrocyte cell line CG4. Given that Fyn activity is up-regulated during oligodendrocyte maturation, the results argue that p250GAP is phosphorylated by Fyn in oligodendrocytes. Tyrosine phosphorylation of p250GAP by Fyn would regulate its RhoGAP activity, subcellular localization, or interactions with other proteins, leading to morphological and phenotypic changes of oligodendrocytes.  相似文献   

13.
14.
Long-term ethanol treatment substantially impairs glycosylation and membrane trafficking in primary cultures of rat astrocytes. Our previous studies indicated that these effects were attributable to a primary alteration in the dynamics and organization of the actin cytoskeleton, although the molecular mechanism(s) remains to be elucidated. As small Rho GTPases and phosphoinositides are involved in the actin cytoskeleton organization, we now explore the effects of chronic ethanol treatment on these pathways. We show that chronic ethanol treatment of rat astrocytes specifically reduced endogenous levels of active RhoA as a result of the increase of in the RhoGAP activity. Furthermore, ethanol-treated astrocytes showed reduced phosphoinositides levels. When lysophosphatidic acid was added to ethanol-treated astrocytes, it rapidly reverted actin cytoskeleton reorganization and raised active RhoA levels and phosphoinositides content to those observed in untreated astrocytes. Overall, our results indicate that the harmful effects of chronic exposure to ethanol on a variety of actin dynamics-associated cellular events are primarily because of alterations of activated RhoA and phosphoinositides pools.  相似文献   

15.
P190-B RhoGAP (p190-B, also known as ARHGAP5) has been shown to play an essential role in invasion of the terminal end buds (TEBs) into the surrounding fat pad during mammary gland ductal morphogenesis. Here we report that embryos with a homozygous p190-B gene deletion exhibit major defects in embryonic mammary bud development. Overall, p190-B-deficient buds were smaller in size, contained fewer cells, and displayed characteristics of impaired mesenchymal proliferation and differentiation. Consistent with the reported effects of p190-B deletion on IGF-1R signaling, IGF-1R-deficient embryos also displayed a similar small mammary bud phenotype. However, unlike the p190-B-deficient embryos, the IGF-1R-deficient embryos exhibited decreased epithelial proliferation and did not display mesenchymal defects. Because both IGF and p190-B signaling affect IRS-1/2, we examined IRS-1/2 double knockout embryonic mammary buds. These embryos displayed major defects similar to the p190-B-deficient embryos including smaller bud size. Importantly, like the p190-B-deficient buds, proliferation of the IRS-1/2-deficient mesenchyme was impaired. These results indicate that IGF signaling through p190-B and IRS proteins is critical for mammary bud formation and ensuing epithelial-mesenchymal interactions necessary to sustain mammary bud morphogenesis.  相似文献   

16.
Disruption of the actin cytoskeleton in subconfluent mesenchymal cells induces chondrogenic differentiation via protein kinase C (PKC) alpha signaling. In this study, we investigated the role of p38 mitogen-activated protein (MAP) kinase in the chondrogenic differentiation of mesenchymal cells that is induced by depolymerization of the actin cytoskeleton. Treatment of mesenchymal cells derived from chick embryonic limb buds with cytochalasin D (CD) disrupted the actin cytoskeleton with concomitant chondrogenic differentiation. The chondrogenesis was accompanied by an increase in p38 MAP kinase activity and inhibition of p38 MAP kinase with SB203580 blocked chondrogenesis. Together these results suggest an essential role for p38 MAP kinase in chondrogenesis. In addition, inhibition of p38 MAP kinase did not alter CD-induced increased expression and activity of PKC alpha, whereas down-regulation of PKC by prolonged exposure of cells to phorbol ester inhibited CD-induced p38 MAP kinase activation. Our results therefore suggest that PKC is involved in the regulation of chondrogenesis induced by disruption of the actin cytoskeleton via a p38 MAP kinase signaling pathway.  相似文献   

17.
18.
Cyclin dependent kinase (cdk) 4 and cdk6 have historically been understood to be D-cyclin kinases that phosphorylate pRb in the nucleus to regulate G1 phase of the cell cycle. In conflict with this understood redundancy are several studies that have demonstrated a novel role for cdk6 in differentiation. Cdk6 expression must be reduced to allow proper osteoblast and osteoclast differentiation, enforced cdk6 expression blocked differentiation of mouse embryo fibroblasts, and cdk6 expression in primary astrocytes favored the expression of progenitor cell markers (Ericson et al. [2003] Mol Cancer Res 1:654-664; Matushansky et al. [2003] Oncogene 22:4143-4149; Ogasawara et al. [2004a] J Bone Miner Res 19:1128-1136; Ogasawara et al. [2004b] Mol Cell Biol 24:6560-6568). Experiments shown here investigate novel cytoplasmic and nuclear functions of cdk6. These data demonstrate that cdk6 expression in mouse astrocytes results in changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility. These changes in cdk6-infected cells are associated with the process of cellular differentiation.  相似文献   

19.
We studied the role of a RhoA-specific guanine nucleotide exchange factor (p190RhoGEF) in dendritic cells (DCs), using transgenic (TG) mice that over-express a full gene of p190RhoGEF under the control of an invariant chain promoter. TG mice lacked localization of activated DCs to the T cell zone in the spleen and had reduced serum levels of IL-6 in response to lipopolysaccharide (LPS) injection. DCs from these mice also showed reduced surface expression of CD86, CD40, and CD205, but not MHCII, as well as a reduced capability to uptake antigen. Moreover, chemokine-driven migration and secretion of IL-6, but not of IL-12, were impaired after LPS-stimulation of TG DCs. Collectively, these results suggest that over-expressing p190RhoGEF negatively regulates conventional DC function in response to bacterial LPS infection.  相似文献   

20.
The actin cytoskeleton has been implicated in endocytosis, yet few molecular links to the endocytic machinery have been established. Here we show that the mammalian F-actin-binding protein Abp1 (SH3P7/HIP-55) can functionally link the actin cytoskeleton to dynamin, a GTPase that functions in endocytosis. Abp1 binds directly to dynamin in vitro through its SH3 domain. Coimmunoprecipitation and colocalization studies demonstrated the in vivo relevance of this interaction. In neurons, mammalian Abp1 and dynamin colocalized at actin-rich sites proximal to the cell body during synaptogenesis. In fibroblasts, mAbp1 appeared at dynamin-rich sites of endocytosis upon growth factor stimulation. To test whether Abp1 functions in endocytosis, we overexpressed several Abp1 constructs in Cos-7 cells and assayed receptor-mediated endocytosis. While overexpression of Abp1's actin-binding modules did not interfere with endocytosis, overexpression of the SH3 domain led to a potent block of transferrin uptake. This implicates the Abp1/dynamin interaction in endocytic function. The endocytosis block was rescued by cooverexpression of dynamin. Since the addition of the actin-binding modules of Abp1 to the SH3 domain construct also fully restored endocytosis, Abp1 may support endocytosis by combining its SH3 domain interactions with cytoskeletal functions in response to signaling cascades converging on this linker protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号