首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect cells in culture are currently commanding great interest as superior hosts for the efficient production of biologicals with applications in health care and in agriculture. Insect cell culture is ripe for scale-up technologies, in order to meet future projected production requirements of (a) insect viruses used as bioinsecticides and (b) recombinant proteins of therapeutic potential for humans and animals. The single most prominent system used in research-based and in commercial insect cell culture today involves lepidopteran cells transfected with baculovirus expression vectors for abundant formation of recombinant biologicals. However, dipteran insect cell lines also are beginning to emerge as useful tools in biotechnology. Current practices in bioprocess development using insect cell culture, advances in media formulation and in insect cell bioreactor design, and emerging trends are presented and critically evaluated.  相似文献   

2.
Virus-like particles (VLP) are formed when viral structural proteins are produced in an heterologous expression system. Such proteins assemble into structures that are morphologically similar to native viruses but lack the viral genome. VLP are complex structures with a wide variety of applications, ranging from basic research and vaccines to potential new uses in nanotechnology. Production of VLP is a challenging task, as both the synthesis and assembly of one or more recombinant proteins are required. This is the case for VLP of rotavirus (RLP), which is an RNA virus with a capsid formed by 1860 monomers of four different proteins. In addition, the production of most VLP requires the simultaneous expression and assembly of several recombinant proteins, which – for the case of RLP – needs to occur in a single host cell. The insect cell baculovirus expression vector system (IC-BEVS) has been shown to be a powerful and convenient system for rapidly and easily producing VLP, due to several convenient features, including its versatility and the short time needed for construction of recombinant baculovirus. In this review, the specific case of rotavirus-like particle (RLP) production by the IC-BEVS is discussed, with emphasis on bioprocess engineering issues that exist and their solutions. Many culture strategies discussed here can be useful for the production of other VLP.  相似文献   

3.
Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.  相似文献   

4.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

5.
随着杆状病毒载体和筛选方法的不断改进,通过Bac-to-Bac方法可以使杆状病毒最大重组率达到100%,缩短了构建重组载体的时间,极大提高了工作效率。另外,研究者开发了一些新的宿主域扩大的昆虫杆状病毒载体,能够在家蚕或蛹内进行高水平表达重组蛋白。昆虫杆状病毒表达系统具有完备的翻译后加工修饰功能和高效表达外源蛋白的能力等特点,是一种非常理想的真核表达系统。利用该表达系统现已成功表达了约千种外源蛋白。以重组杆状病毒为载体的昆虫表达系统、外源基因在该表达系统中的表达情况及在农业领域中的应用进行了介绍。  相似文献   

6.
Baculovirus vector systems are extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which makes it possible to express multiple genes simultaneously within a single infected insect cell and to obtain multimeric proteins functionally similar to their natural analogs. Recombinant viruses with expression cassettes active in mammalian cells are used to deliver and express genes in mammalian cells in vitro and in vivo. Further improvement of the baculovirus expression system and its adaptation to specific target cells can open up a wide variety of applications. The review considers recent achievements in the use of modified baculoviruses to express recombinant proteins in eukaryotic cells, advantages and drawbacks of the baculovirus expression system, and ways to optimize the expression of recombinant proteins in both insect and mammalian cell lines.  相似文献   

7.
As a protein expression vector,the baculovirus demonstrates many advantages over other vectors.With the development of biotechnology,baculoviral vectors have been genetically modified to facilitate hig...  相似文献   

8.
Expression of certain transgenes from an adenovirus vector can be deleterious to its own replication. This can result in the inhibition of virus rescue, reduced viral yields, or, in the worst case, make it impossible to construct a vector expressing the inhibiting transgene product. A gene regulation system based on the tet operon was used to allow the rescue and efficient growth of adenovectors that express transgenes to high levels. A key advantage to this system is that repression of transgene expression is mediated by the packaging cell line, thus, expression of regulatory products from the adenovector are not required. This provides a simple, broadly applicable system wherein transgene repression is constitutive during vector rescue and growth and there is no effect on adenovector-mediated expression of gene products in transduced cells. Several high-level expression vectors based on first- and second-generation adenovectors were rescued and produced to high titer that otherwise could not be grown. Yields of adenovectors expressing inhibitory transgene products were increased, and the overgrowth of cultures by adenovectors with nonfunctional expression cassettes was prevented. The gene regulation system is a significant advancement for the development of adenovirus vectors for vaccine and other gene transfer applications.  相似文献   

9.
Insect cell culture and the baculovirus vector expression system have emerged to be a promising production technique for heterologous proteins. In this article, expression characteristics for membrane-bound epoxide hydrolase are examined. A generic process is presented whereby cells are grown in serum-free media supplemented with serum and then resuspended in serum-free media to simplify purification after infection. The infected cells retain significant metabolic activity during the postinfection stage. Thus, maintaining nutrient supply during the postinfection period is critical, and a low stirring rate will result in oxygen depletion and shift the metabolism of the infected cells toward lactate production which then lowers product yield. This is the first report indicating that glucose is supplied from sucrose decomposition and then metabolized for viral DNA and recombinant protein production in recombinant baculovirus insect expression system. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
11.
Insect cell culture for industrial production of recombinant proteins   总被引:18,自引:0,他引:18  
Insect cells used in conjunction with the baculovirus expression vector system (BEVS) are gaining ground rapidly as a platform for recombinant protein production. Insect cells present several comparative advantages to mammalian cells, such as ease of culture, higher tolerance to osmolality and by-product concentration and higher expression levels when infected with a recombinant baculovirus. Here we review some of the recent developments in protein expression by insect cells and their potential application in large-scale culture. Our current knowledge of insect cell metabolism is summarised and emphasis is placed on elements useful in the rational design of serum-free media. The culture of insect cells in the absence of serum is reaching maturity, and promising serum substitutes (hydrolysates, new growth and production-enhancing factors) are being evaluated. Proteolysis is a problem of the BEVS system due to its lytic nature, and can, therefore, be a critical issue in insect cell bioprocessing. Several cell- or baculovirus proteases are involved in degradation events during protein production by insect cells. Methods for proteolysis control, the optimal inhibitors and culture and storage conditions which affect proteolysis are discussed. Finally, engineering issues related to high-density culture (new bioreactor types, gas exchange, feeding strategies) are addressed in view of their relevance to large-scale culture.  相似文献   

12.
13.
14.
The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type.  相似文献   

15.
Baculoviruses are widely used for protein production in insect cells, and their potential for gene transfer to mammalian cells is increasingly being recognized. Here we describe a baculovirus vector with a bicistronic mammalian expression cassette and demonstrate its suitability for efficient transient and stable protein expression in human glioblastoma cells. Bicistronic baculovirus vectors are safe, cost efficient, and easy to produce; thus, they represent an excellent gene transfer system for mammalian cells.  相似文献   

16.
Glycosylation, the most extensive co- and post-translational modification of eukaryotic cells, can significantly affect biological activity and is particularly important for recombinant glycoproteins in human therapeutic applications. The baculovirus-insect cell expression system is a popular tool for the expression of heterologous proteins and has an excellent record of producing high levels of biologically active eukaryotic proteins. Insect cells are capable of glycosylation, but their N-glycosylation pathway is truncated in comparison with the pathway of mammalian cells. A previous study demonstrated that an immediate early recombinant baculovirus could be used to extend the insect cell N-glycosylation pathway by contributing bovine -1,4 galactosyltransferase (GalT) immediately after infection. Lectin blotting assays indicated that this ectopically expressed enzyme could transfer galactose to an N-linked glycan on a foreign glycoprotein expressed later in infection. In the current study, glycans were isolated from total Sf-9 cell glycoproteins after infection with the immediate early recombinant baculovirus encoding GalT, fluorescently conjugated and analyzed by electrophoresis in combination with exoglycosidase digestion. These direct analyses clearly demonstrated that Sf-9 cells infected with this recombinant baculovirus can synthesize galactosylated N-linked glycans.  相似文献   

17.
The production of viral vectors or virus-like particles for gene therapy or vaccinations using the baculovirus expression system is gaining in popularity. Recently, reports of a viral vector based on adeno-associated virus (AAV) produced in insect cells using the baculovirus expression vector system have been published. This system requires the triple infection of cells with baculovirus vectors containing the AAV gene for replication proteins (BacRep), the AAV gene for structural proteins (BacCap), and the AAV vector genome (BacITR). A statistical approach was used to investigate the multiplicities of infection of the three baculoviruses and the results were extended to the production of AAVs containing various transgenes. Highest AAV yields were obtained when BacRep and BacCap, the baculovirus vectors containing genes that code for proteins necessary for the formation of the AAV vector, were added in equal amounts at high multiplicities of infection. These combinations also resulted in the closest ratios of infectious to total AAV particles produced. Overexpression of the AAV structural proteins led to the production of empty AAV capsids, which is believed to overload the cellular machinery, preventing proper encapsidation of the AAV vector transgene, and decreased the viability of the insect cells. Delaying the input of BacCap, to reduce the amount of capsids produced, resulted in lower infectious AAV titers then when all three baculoviruses were put into the system at the same time. The amount of BacITR added to the system can be less than the other two without loss of AAV yield.  相似文献   

18.
Wu TY  Wu CY  Chen YJ  Chen CY  Wang CH 《FEBS letters》2007,581(16):3120-3126
A bicistronic baculovirus expression vector and fluorescent protein-based assays were used to identify the sequences that possess internal translation activity in baculovirus-infected insect cells. We demonstrated that the 5' untranslated region (5'UTR; 473 nucleotides) of Perina nuda virus (PnV) and the 5'UTR (579 nucleotides) of Rhopalosiphum padi virus (RhPV), but not the IRES sequence of Cricket paralysis virus, have internal translation activity in baculovirus-infected Sf21 cells. In addition, we found that including the first 22 codons of the predicted PnV open reading frame (ORF; a total of 539 nucleotides) enhanced internal translation activity by approximately 18 times. This is the first report of internal translation activity for a baculovirus expression system (BEVS) in the iflavirus 5' sequence and may facilitate the development of polycistronic baculovirus transfer vectors that can be used in BEVS for the production of multiple protein complexes.  相似文献   

19.
Critical molecular and cellular biological factors impacting design of licensable DNA vaccine vectors that combine high yield and integrity during bacterial production with increased expression in mammalian cells are reviewed. Food and Drug Administration (FDA), World Health Organization (WHO) and European Medical Agencies (EMEA) regulatory guidance's are discussed, as they relate to vector design and plasmid fermentation. While all new vectors will require extensive preclinical testing to validate safety and performance prior to clinical use, regulatory testing burden for follow-on products can be reduced by combining carefully designed synthetic genes with existing validated vector backbones. A flowchart for creation of new synthetic genes, combining rationale design with bioinformatics, is presented. The biology of plasmid replication is reviewed, and process engineering strategies that reduce metabolic burden discussed. Utilizing recently developed low metabolic burden seed stock and fermentation strategies, optimized vectors can now be manufactured in high yields exceeding 2 g/L, with specific plasmid yields of 5% total dry cell weight.  相似文献   

20.
Baculovirus expression vectors are widely used for expressing heterologous proteins in cultured insect cells. Recent advances include further development of the system for production of multi-subunit protein complexes, co-expression of protein-modifying enzymes to improve heterologous protein production, and additional applications of baculovirus display technology. The application of modified baculovirus vectors for gene expression in mammalian cells continues to expand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号