首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
Alpha1 adrenoceptors have three subtypes and drugs interacting selectively with these subtypes could be useful in the treatment of a variety of diseases. In order to gain an insight into the structural principles governing subtype selectivity, ligand based drug design (pharmacophore development) methods have been used to design a novel 1,2,3-thiadiazole ring D analogue of the aporphine system. Synthesis and testing of this compound as a ligand on cloned and expressed human alpha1 adrenoceptors is described. Low binding affinity was found, possibly due to an unfavourable electrostatic potential distribution. Pharmacophore models for antagonists at the three adrenoceptor sites (alpha1A, alpha1B, alpha1D) were generated from a number of different training sets and their value for the design of new selective antagonists discussed. The first preliminary antagonist pharmacophore model for the alpha1D adrenoceptor subtype is also reported.  相似文献   

2.
Cannabinoid receptor-1 (CB(1)) is widely expressed in the central nervous system and plays a vital role in regulating food intake and energy expenditure. CB(1) antagonists such as Rimonabant have been used in clinic to inhibit food intake, and therefore reduce body weight in obese animals and humans. To investigate the binding modes of CB(1) antagonists to the receptor, both receptor- and ligand-based methods were implemented in this study. At first, a pharmacophore model was generated based on 31 diverse CB(1) antagonists collected from literature. A test set validation and a simulated virtual screening evaluation were then performed to verify the reliability and discriminating ability of the pharmacophore. Meanwhile, the homology model of CB(1) receptor was constructed based on the crystal structure of human β (2) adrenergic receptor (β (2)-AR). Several classical antagonists were then docked into the optimized homology model with induced fit docking method. A hydrogen bond between the antagonists and Lys192 on the third transmembrane helix of the receptor was formed in the docking study, which has proven to be critical for receptor-ligand interaction by biological experiments. The structure obtained from induced fit docking was then confirmed to be a reliable model for molecular docking from the result of the simulated virtual screening. The consistency between the pharmacophore and the homology structure further proved the previous observation. The built receptor structure and antagonists' pharmacophore should be useful for the understanding of inhibitory mechanism and development of novel CB(1) antagonists.  相似文献   

3.
Maternal use of selective serotonin (5-HT) reuptake inhibitors (SSRIs) is associated with an increased risk for persistent pulmonary hypertension of the newborn (PPHN), but little is known about 5-HT signaling in the developing lung. We hypothesize that 5-HT plays a key role in maintaining high pulmonary vascular resistance (PVR) in the fetus and that fetal exposure to SSRIs increases 5-HT activity and causes pulmonary hypertension. We studied the hemodynamic effects of 5-HT, 5-HT receptor antagonists, and SSRIs in chronically prepared fetal sheep. Brief infusions of 5-HT (3-20 μg) increased PVR in a dose-related fashion. Ketanserin, a 5-HT 2A receptor antagonist, caused pulmonary vasodilation and inhibited 5-HT-induced pulmonary vasoconstriction. In contrast, intrapulmonary infusions of GR127945 and SB206553, 5-HT 1B and 5-HT 2B receptor antagonists, respectively, had no effect on basal PVR or 5-HT-induced vasoconstriction. Pretreatment with fasudil, a Rho kinase inhibitor, blunted the effects of 5-HT infusion. Brief infusions of the SSRIs, sertraline and fluoxetine, caused potent and sustained elevations of PVR, which was sustained for over 60 min after the infusion. SSRI-induced pulmonary vasoconstriction was reversed by infusion of ketanserin and did not affect the acute vasodilator effects of acetylcholine. We conclude that 5-HT causes pulmonary vasoconstriction, contributes to maintenance of high PVR in the normal fetus through stimulation of 5-HT 2A receptors and Rho kinase activation, and mediates the hypertensive effects of SSRIs. We speculate that prolonged exposure to SSRIs can induce PPHN through direct effects on the fetal pulmonary circulation.  相似文献   

4.
A(2A) adenosine receptor (AR) antagonists play an important role in neurodegenerative diseases like Parkinson's disease. A 3D-QSAR study of A(2A) AR antagonists, was taken up to design best pharmacophore model. The pharmacophoric features (ADHRR) containing a hydrogen bond acceptor (A), a hydrogen bond donor (D), a hydrophobic group (H) and two aromatic rings (R), is projected as the best predictive pharmacophore model. The QSAR model was further treated as a template for in silico search of databases to identify new scaffolds. The binding patterns of the leads with A(2A) AR are analysed using docking studies and novel potent ligands of A(2A) AR are projected.  相似文献   

5.
Lu C  Jin F  Li C  Li W  Liu G  Tang Y 《Journal of molecular modeling》2011,17(10):2513-2523
5-hydroxytryptamine-2c (5-HT2c) receptor antagonists have clinical utility in the management of nervous system. In this work, ligand-based and receptor-based methods were used to investigate the binding mode of h5-HT2c receptor antagonists. First, the pharmacophore modeling of the h5-HT2c receptor antagonists was carried out by CATALYST. Then, the h5-HT2c antagonists were docked to the h5-HT2c receptor model. Subsequently, the comprehensive analysis of the pharmacophore and docking results revealed the structure-activity relationship of 5-HT2c receptor antagonists and the key residues involved in the interactions. For example, three hydrophobic points in the ligands corresponded to the region surrounded by Val135, Val208, Phe214, Ala222, Phe327, Phe328 and Val354 of the h5-HT2c receptor. The carbonyl group of compound 1 formed a hydrogen bond with Asn331. The nitrogen atom in the piperidine of compound 1 corresponding to the positive ionizable position of the best pharmacophore formed the electrostatic interactions with the carbonyl of Asp134, Asn331 and Val354, and with the hydroxyl group of Ser334. In addition, a predictive CoMFA model was developed based on the 24 compounds that were used as the training set in the pharmacophore modeling. Our results were not only useful to explore the detailed mechanism of the interactions between the h5-HT2c receptor and antagonists, but also provided suggestions in the discovery of novel 5-HT2c receptor antagonists.  相似文献   

6.
Dempsey CM  Mackenzie SM  Gargus A  Blanco G  Sze JY 《Genetics》2005,169(3):1425-1436
Drugs that target the serotonergic system are the most commonly prescribed therapeutic agents and are used for treatment of a wide range of behavioral and neurological disorders. However, the mechanism of the drug action remain a conjecture. Here, we dissect the genetic targets of serotonin (5HT), the selective 5HT reuptake inhibitor (SSRI) fluoxetine (Prozac), the tricyclic antidepressant imipramine, and dopamine. Using the well-established serotonergic response in C. elegans egg-laying behavior as a paradigm, we show that action of fluoxetine and imipramine at the 5HT reuptake transporter (SERT) and at 5HT receptors are separable mechanisms. Even mutants completely lacking 5HT or SERT can partially respond to fluoxetine and imipramine. Furthermore, distinct mechanisms for each drug can be recognized to mediate these responses. Deletion of SER-1, a 5HT1 receptor, abolishes the response to 5HT but has only a minor effect on the response to imipramine and no effect on the response to fluoxetine. In contrast, deletion of SER-4, a 5HT2 receptor, confers significant resistance to imipramine while leaving the responses to 5HT or fluoxetine intact. Further, fluoxetine can stimulate egg laying via the Gq protein EGL-30, independent of SER-1, SER-4, or 5HT. We also show that dopamine antagonizes the 5HT action via the 5HT-gated ion channel MOD-1 signaling, suggesting that this channel activity couples 5HT and dopamine signaling. These results suggest that the actions of these drugs at specific receptor subtypes could determine their therapeutic efficacy. SSRIs and tricyclic antidepressants may regulate 5HT outputs independently of synaptic levels of 5HT.  相似文献   

7.
Serotonin (5‐hydroxytryptamine, 5‐HT) has been implicated to play critical roles in early neural development. Recent reports have suggested that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) resulted in cortical network miswiring, abnormal social behavior, callosal myelin malformation, as well as oligodendrocyte (OL) pathology in rats. To gain further insight into the cellular and molecular mechanisms underlying SSRIs‐induced OL and myelin abnormalities, we investigated the effect of 5‐HT exposure on OL development, cell death, and myelination in cell culture models. First, we showed that 5‐HT receptor 1A and 2A subtypes were expressed in OL lineages, using immunocytochemistry, Western blot, as well as intracellular Ca2+ measurement. We then assessed the effect of serotonin exposure on the lineage development, expression of myelin proteins, cell death, and myelination, in purified OL and neuron‐OL myelination cultures. For pure OL cultures, our results showed that 5‐HT exposure led to disturbance of OL development, as indicated by aberrant process outgrowth and reduced myelin proteins expression. At higher doses, such exposure triggered a development‐dependent cell death, as immature OLs exhibited increasing susceptibility to 5‐HT treatment compared to OL progenitor cells (OPC). We showed further that 5‐HT‐induced immature OL death was mediated at least partially via 5‐HT2A receptor, since cell death could be mimicked by 5‐HT2A receptor agonist 1‐(2,5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride, (±)‐2,5‐dimethoxy‐4‐iodoamphetamine hydrochloride, but atten‐uated by pre‐treatment with 5‐HT2A receptor antagonist ritanserin. Utilizing a neuron‐OL myelination co‐culture model, our data showed that 5‐HT exposure significantly reduced the number of myelinated internodes. In contrast to cell injury observed in pure OL cultures, 5‐HT exposure did not lead to OL death or reduced OL density in neuron‐OL co‐cultures. However, abnormal patterns of contactin‐associated protein (Caspr) clustering were observed at the sites of Node of Ranvier, suggesting that 5‐HT exposure may affect other axon‐derived factors for myelination. In summary, this is the first study to demonstrate that manipulation of serotonin levels affects OL development and myelination, which may contribute to altered neural connectivity noted in SSRIs‐treated animals.

  相似文献   


8.
A2A adenosine receptor (AR) antagonists play an important role in neurodegenerative diseases like Parkinson’s disease. A 3D-QSAR study of A2A AR antagonists, was taken up to design best pharmacophore model. The pharmacophoric features (ADHRR) containing a hydrogen bond acceptor (A), a hydrogen bond donor (D), a hydrophobic group (H) and two aromatic rings (R), is projected as the best predictive pharmacophore model. The QSAR model was further treated as a template for in silico search of databases to identify new scaffolds. The binding patterns of the leads with A2A AR are analysed using docking studies and novel potent ligands of A2A AR are projected.  相似文献   

9.
Abstract

HCV NS5B polymerase has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting Hepatitis C Virus genotype 1 (HCV GT1). Hepatitis C virus genotype 4a (HCV GT4a) dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS5B polymerase of GT4a using homology modeling, protein–ligand interaction fingerprint (PLIF), docking, pharmacophore, and 3D CoMFA quantitative structure activity relationship (QSAR). Firstly, a high-quality 3D model of HCV NS5B polymerase of GT4a was constructed using crystal structure of HCV NS5B polymerase of GT1 (PDB ID: 3hkw) as a template. Then, both the model and the template were simulated to compare conformational stability. PLIF was generated using five crystal structures of HCV NS5B (PDB ID: 4mia, 4mib, 4mk9, 4mka, and 4mkb), which revealed the most important residues and their interactions with the co-crystalized ligands. After that, a 3D pharmacophore model was developed from the generated PLIF data and then used as a screening filter for 17000328 drug-like zinc database compounds. 900 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. Finally, a 3D CoMFA QSAR was developed using 42 compounds as a training and 19 compounds as a test set. The 3D CoMFA QSAR was used to design and screen some potential inhibitors, these compounds were further evaluated by the docking stage. The highest ranked five hits from docking result (compounds (p1–p4) and compound q1) were selected for further analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

11.
Abstract: In vivo microdialysis in guinea pig hypothalamus was used to study the effect of serotonin [5-hydroxytryptamine (5-HT)] subtype 1D autoreceptor blockade on the increase in extracellular 5-HT levels produced by a selective 5-HT reuptake inhibitor (SSRI). Administration of the selective 5-HT1D antagonist GR127935 at 0.3 mg/kg had no effect, but 5 mg/kg significantly increased extracellular levels of 5-HT and 5-hydroxyindoleacetic acid to 135% of basal values. Moreover, at these doses GR127935 significantly attenuated the decrease in extracellular 5-HT levels following local perfusion with the selective 5-HT1D agonist CP-135,807. The SSRI sertraline at 2 mg/kg increased 5-HT levels to 130% of basal levels. The combination of this low dose of sertraline with either dose of GR127935 resulted in a pronounced, long-lasting increase in 5-HT levels to 230% of basal values. These results indicate that the effects of an SSRI on terminal 5-HT are significantly enhanced by coadministration of a 5-HT1D antagonist and confirm that in addition to somatodendritic 5-HT1A autoreceptors, terminal 5-HT1D autoreceptors mitigate the effect of SSRIs on terminal 5-HT. As such, antagonists of the 5-HT1D autoreceptor could be useful as rapidly acting antidepressants and may shorten the onset of antidepressant action when combined with SSRIs.  相似文献   

12.
We have recently drawn attention to the fact that most non-peptide antagonists of the kinin B1 receptor reported so far are structurally related, possessing the core motif phenyl-SO2-NR-(spacer(2-4))-CO-NRR. This is found in compound A (N-[2-[4-(4,5-dihydro-1H-imidazol-2- yl)phenyl]ethyl] - 2- [(2R)-1-(2-napthylsulfonyl)-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl]acetamide), a very potent and selective B1 receptor antagonist. A subset of specific bradykinin B2 receptor antagonists (LF16-0687, bradyzide and derivatives) possesses a similar 'scaffold' (phenyl-SO2-NR-CRR-CO-NRR). We investigated whether simple molecules mimicking the postulated pharmacophores could be identified in two public chemical databases. Receptor binding to B1 and B2 receptors expressed by rabbit cultured smooth-muscle cells was confirmed for some of these newly identified agents, with a loss of receptor subtype selectivity. For instance, compound 3[2-(3-oxo-1-(toluene-4-sulfonyl)-1,2,3,4-4H-quinoxalin-2-yl)-N-phenyl-acetamide] exhibits IC50 values of 2.13 and 126 microM in the radioligand competition assays for B1 and B2 receptors, respectively, and a pA2 of 6.27 at the rabbit B1 receptor in a functional test (Lys-des-Arg9-bradykinin-induced contractility of the isolated aorta). Compound 5 (a close analog of compound 3) is a more balanced dual antagonist of low potency (IC50 values of 30 and 117 microM, respectively). As predicted, compounds modeled on a postulated pharmacophore common to some non-peptide B1 or B2 receptor antagonists exhibit measurable binding with decreased receptor subtype selectivity. Dual B1/B(2) receptor antagonists are of possible therapeutic interest and should be developed.  相似文献   

13.
A series of novel 1,3-benzodiazapine based D1 antagonists was designed according to the understanding of pharmacophore models derived from SCH 23390 (1b), a potent and selective D1 antagonist. The new design features an achiral cyclic-amidine that maintains desired basicity. Solid phase synthesis was developed for SAR development of the novel dopamine antagonists.  相似文献   

14.
In the present study, we utilized virtual screening to identify LPA(3) antagonists. We have developed a three-point structure-based pharmacophore model based on known LPA(3) antagonists. This model was used to mine the NCI database. Docking, pharmacophore development, and database mining produced new, non-lipid leads. Experimental testing of seven computationally selected pharmacophore hits produced one potentiator and three antagonists, one of which displays both LPA(3) selectivity and nanomolar potency. Similarity searching in the ChemBridge database using the most promising lead as the search target produced four additional LPA(3) antagonists and a potent dual LPA(1&2) antagonist.  相似文献   

15.
Recent studies have shown that G-protein-coupled receptors (GPCRs) can assemble as high molecular weight homo- and hetero-oligomeric complexes. This can result in altered receptor-ligand binding, signaling, or intracellular trafficking. We have co-transfected HEK-293 cells with differentially epitope-tagged GPCRs from different subfamilies and determined whether oligomeric complexes were formed by co-immunoprecipitation and immunoblot analysis. This gave the surprising result that the 5HT(1A) receptor was capable of forming hetero-oligomers with all GPCRs tested including the 5HT(1B), 5HT(1D), EDG(1), EDG(3), GPR(26), and GABA(B2) receptors. The testing of other GPCR combinations showed similar results with hetero-oligomer formation occurring for the 5HT(1D) with the 5HT(1B) and EDG(1) receptor. Control studies showed that these complexes were present in co-transfected cells before the time of lysis and that the hetero-oligomers were comprised of GPCRs at discrete stoichiometries. These findings suggest that GPCRs have a natural tendency to form oligomers when co-transfected into cells. Future studies should therefore investigate the presence and physiological role of GPCR hetero-oligomers in cells in which they are endogenously expressed.  相似文献   

16.
Selective serotonin reuptake inhibitors (SSRIs) can mimic the physiological actions of serotonin, and in bivalve molluscs they induce zebra mussel spawning and fingernail clam parturition. We have elucidated further the pharmacology of SSRI-induced spawning and part-urition by blocking these reproductive processes with two mammalian 5-HT(2) receptor antagonists, cyproheptadine and mianserin. These two antagonists were potent inhibitors of both spawning and parturition induced by the SSRIs fluvoxamine, fluoxetine, and zimelidine. In zebra mussels, both cyproheptadine and mianserin significantly blocked spawning induced by fluvoxamine and by zimelidine. In the fingernail clams Sphaerium spp., both cyproheptadine and mianserin blocked fluvoxamine-induced parturition. A possible mechanism of action for SSRI-induced spawning and parturition in bivalves is suggested.  相似文献   

17.
A chemical feature based pharmacophore model was developed for alpha(1A)-adrenoceptor antagonists by HypoGen module implemented in catalyst software package. The best scoring pharmacophore hypothesis, Hypo1, consisted of four important chemical features (one positive ion, one hydrogen-bond donor, one aromatic ring, and one hydrophobic group). The results of our study provide a valuable tool in designing new leads with desired biological activity by virtual screening.  相似文献   

18.
Serotonin and octopamine (OA) are biogenic amines that are active throughout the nervous systems of insects, affecting sensory processing, information coding and behavior. As an initial step towards understanding the modulatory roles of these amines in olfactory processing we cloned two putative serotonin receptors (Ms5HT1A and Ms5HT1B) and one putative OA (MsOAR) receptor from the moth Manduca sexta. Ms5HT1A and Ms5HT1B were both similar to 5HT1-type receptors but differed from each other in their N-terminus and 3rd cytoplasmic loop. Ms5HT1A was nearly identical to a serotonin receptor from Heliothis virescens and Ms5HT1B was almost identical to a serotonin receptor from Bombyx mori. The sequences for homologs of Ms5HT1A from B. mori and Ms5HT1B from H. virescens were also obtained, suggesting that the Lepidoptera likely have at least two serotonin receptors. The MsOAR shares significant sequence homology with pharmacologically characterized OA receptors, but less similarity to putative OA/tyramine receptors from the moths B. mori and H. virescens. Using the MsOAR sequence, fragments encoding putative OA receptors were obtained from B. mori and H. virescens, suggesting that MsOAR is the first OA receptor cloned from a lepidopteran.  相似文献   

19.
We have previously demonstrated that adenosine controls the release of catecholamines (CA) from carotid body (CB) acting on A2B receptors. Here, we have tested the hypothesis that the control is exerted via an interaction between adenosine A2B and dopamine D2 receptors present in chemoreceptor cells. Experiments were performed in vitro in CB from 3 months rats. The effect of A2B adenosine and D2 dopamine agonists and antagonists applied alone or in combination were studied on basal (20%O2) and hypoxia (10%O2)-evoked release of CA and cAMP content of CB. We have found that adenosine A2 agonists and D2 antagonists dose-dependently increased basal and evoked release CA from the CB while A2 antagonists and D2 agonists had an inhibitory action. The existence of A2B-D2 receptor interaction was established because the inhibitory action of A2 antagonists was abolished by D2 antagonists, and the stimulatory action of A2 agonists was abolished by D2 agonists. Further, A2 agonists increased and D2 agonist decreased cAMP content in the CB; their co-application eliminated the response. The present results provide direct pharmacological evidence that an antagonistic interaction between A2B adenosine and D2 dopamine receptors exist in rat CB and would explain the dopamine-adenosine interactions on ventilation previously observed.  相似文献   

20.
This paper describes the synthesis and biological evaluation of a series of straight chain analogs of a compound (1) that was previously synthesized in our research program. These compounds, which are T-type calcium channel antagonists, exhibits potent anti-proliferative activity against a variety of cancer cells. A structure-activity relationship of these analogs against a variety of cancer cells has provided insight into a logical pharmacophore for this series of compounds. Furthermore, this series of compounds has presented itself as a set of novel, concentration dependent, dual action agonists/antagonists for the T-type calcium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号