首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measles virus-directed protein synthesis was examined in two HeLa cell lines (K11 and K11A) that are persistently infected with wild-type measles virus. Four viral proteins (H, hemagglutination protein; P, nucleocapsid-associated protein; NP, the major nucleocapsid protein; and M, the matrix protein) were readily detected in both cell lines by immune precipitation of [(35)S]methionine-labeled cell extracts followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three (H, NP, and M) of the four viral proteins in both K11 and K11A cells differed from the corresponding viral proteins synthesized in HeLa cells acutely infected with the parental wild-type virus. In addition, the M protein from K11A cells migrated significantly more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the M protein from K11 cells, and there appeared to be slight differences in the H and NP proteins between these two persistently infected cell lines. The altered viral proteins detected in K11 and K11A cells appeared to be the result of viral mutations rather than changes in the host cell, since virus recovered from these cells directed the synthesis of similar aberrant viral proteins in HeLa cells. Virus recovered from K11 cells and virus recovered from K11A cells were both temperature sensitive and grew more slowly than wild-type virus. HeLa cells infected with virus recovered from K11 cells readily became persistently infected, resembling the original persistently infected K11 cells. Thus, viral mutations are associated with persistent measles virus infections in cell cultures.  相似文献   

2.
The intracellular synthesis of human parainfluenza type 3 virus-specified polypeptides was examined by polyacrylamide gel electrophoresis of [35S]methionine-labeled cell extracts under reducing conditions. All of the virion structural proteins were detected in cell extracts, including: L, 180,000 molecular weight (180K); P, 83K; HN, 69K; NP, 66K; F0, 60K; F1, 51K; and M, 38K. P and NP were phosphorylated. HN and F were glycosylated. The kinetics of intracellular viral protein synthesis did not detect any early or late proteins. Pulse-chase experiments failed to detect any precursor-product relationships. No nonstructural proteins were detected.  相似文献   

3.
Structural proteins of two salmonid rhabdoviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Purified infectious hematopoietic necrosis (IHN) virus and the virus of haemorrhagic septicaemia (VHS) (Egtved virus) each contain five structural proteins which were designated L, G, N, M-1, and M-2. The IHN viral polypeptides have molecular weights estimated to be 157,000, 72,000, 40,000, 25,000 and 20,000, respectively, whereas those of VHS viral polypeptides are estimated to be 157,000 74,000, 41,000, 21,500, and 19,000, respectively. The carbohydrate composition of the glycoprotein (G) was confirmed by demonstrating selective incorporation of [3H]glucosamine into the designated G protein of both viruses. Phosphoproteins were identified by incorporation of [32P]orthophosphate into the N and M-1 proteins of IHN virus and into the N protein of VHS virus. The glycoprotein of each virus was selectively solubilized by treatment with Triton X-100 in low salt buffer, whereas the M-1, and M-2 proteins along with the G protein were solubilized by Ttition X-100 in 0.43 M NaCl. The protein composition of the salmonid rhabdoviruses resembles that of the rabies virus group more closely than the vesicular stomatitis virus group.  相似文献   

4.
The virion proteins and genomic RNA of human parainfluenza virus 3 have been characterized. The virion contains seven major and two minor proteins. Three proteins of 195 X 10(3) molecular weight (195K), 87K, and 67K are associated with the nucleocapsid of the virion and have been designated L, P, and NP, respectively. Three proteins can be labeled with [14C]glucosamine and have molecular weights of 69K, 60K, and 46K. We have designated these proteins as HN, F0, and F1, respectively. HN protein has interchain disulfide bonds, but does not participate in disulfide bonding to form homomultimeric forms. F1 appears to be derived from a complex, F1,2, that has an electrophoretic mobility similar to that of F0 under nonreducing conditions. A protein of 35K is associated with the envelope components of the virion and aggregates under low-salt conditions; this protein has been designated M. The genome of human parainfluenza virus 3 is a linear RNA molecule with a molecular weight of approximately 4.6 X 10(6).  相似文献   

5.
6.
Polypeptides synthesized in Newcastle disease virus (NDV)-infected CHO cells in the absence of glycosylation were characterized. Incorporation of either [3H]mannose of [3H]glucosamine into NDV polypeptides was inhibited to greater than 99% by the antibiotic tunicamycin. Under these conditions, infected cells synthesized proteins which comigrated on polyacrylamide gels with the viral L protein, nucleocapsid protein, membrane protein, and a polypeptide with a molecular weight of 55,000 (P55). These cells did not synthesize polypeptides with the size of the hemagglutinin-neuraminidase (HN) protein or the fusion (F0) protein. They did, however, synthesize new polypeptides with molecular weights of 75,000 (P75), 67,000 (P67), and 52,000 (P52). Peptide analysis revealed that P75 was a host cell protein whose synthesis is enhanced by tunicamycin. P67 corresponded to the unglycosylated forms of the glycoproteins were found to be relatively stable in infected cells. P55, previously thought to correspond to the cleaved form of F0, was found to be a unique viral protein which is associated with intracellular nucleocapsid structures.  相似文献   

7.
Monoclonal antibodies to herpes simplex virus type 2 were found to precipitate different numbers of radiolabeled polypeptides from lysates of virus-infected cells. Antibodies directed against two viral glycoproteins were characterized. Antibodies from hybridoma 17 alpha A2 precipitated a 60,000-molecular-weight polypeptide which chased into a 66,000- and 79,000-molecular-weight polypeptide. All three polypeptides labeled in the presence of [3H]glucosamine and had similar tryptic digest maps. The 60,000-molecular-weight polypeptide also chased into a 31,000-molecular-weight species which did not label with [3H]glucosamine. Antibodies from hybridoma 17 beta C2 precipitated a 50,000-molecular-weight polypeptide which chased into a 56,000- and 80,000-molecular weight polypeptide. These polypeptides also shared a similar tryptic digest map and labeled with [3H]glucosamine. Both monoclonal antibodies were herpes simplex virus type 2 specific. The viral proteins precipitated by 17 alpha A2 antibodies had characteristics similar to those reported for glycoprotein E, whereas the proteins precipitated by 17 beta C2 antibodies appeared to represent a glycoprotein not previously described. This glycoprotein should be tentatively designated glycoprotein F.  相似文献   

8.
Polypeptide Synthesis in Simian Virus 5-Infected Cells   总被引:11,自引:6,他引:5       下载免费PDF全文
Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F(0)) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F(1) and F(2). No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus replication is discussed.  相似文献   

9.
(35S) methionine-labeled polypeptides synthesized by adenovirus type 2-infected cells have been analyzed by polyacrylamide gradient gel electrophoresis and autoradiography. Cycloheximide (CH) was added to infected cultures to accumulate early viral mRNA relative to host cell mRNA. This allowed viral proteins to be synthesized in increased amounts relative to host proteins after removal of CH and pulse-labeling with (35S)methionine. During the labeling period arabinosyl cytosine was added to prevent the synthesis of late viral proteins. This procedure facilitated the detection of six early viral-induced polypeptides, designated EP1 through EP6 (early protein), with apparent molecular weights of 75,000 (75K), 42K, 21K, 18K, 15K, and 11K. Supportive data were obtained by coelectrophoresis of (35S)- and (3H)methionine-labeled polypeptides from infected and uninfected cells, respectively. Three of these early polypeptides have not been previously reported. CH pretreatment enhanced the rates of synthesis of EP4 and EP6 20- to 30-fold and enhanced that of the others approximately twofold. The maximal rates of synthesis of the virus-induced proteins varied, in a different manner, with time postinfection and CH pretreatment. Since CH pretreatment appears to increase the levels of early viral proteins, it may be a useful procedure to assist their isolation and functional characterization.  相似文献   

10.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

11.
The content of viral structural (gag) protein sequences in polypeptides encoded by replication-defective avian erythroblastosis virus (AEV) and myelocytomatosis virus MC29 was assessed by immunological and peptide analyses. Direct comparison with gag proteins of the associated helper viruses revealed that MC29 110K polypeptide contained p19, p12, and p27, whereas the AEV 75K polypeptide had sequences related only to p19 and p12. Both of these polypeptides contained some information that was unrelated to gag, pol, or env gene products. In addition, no homology was detected between these unique peptides of MC29 110K and AEV 75K. The AEV 75K polypeptide shared strain-specific tryptic peptides with the p19 encoded by its naturally occurring helper virus; this observation suggests that gag-related sequences in 75K were originally derived from the helper viral gag gene. Digestion of oxidized MC29 110K and AEV 75K proteins with the Staphylococcus aureus V8 protease generated a fragment which comigrated with N-acetylmethionylsulfoneglutamic acid, a blocked dipeptide which is the putative amino-terminal sequence of structural protein p19 and gag precursor Pr76gag. This last finding is evidence that the gag sequences are located at the N-terminal end of the MC29 110K and AEV 75K polypeptides.  相似文献   

12.
The NS1A protein of influenza A virus binds the cellular CPSF30 protein, thereby inhibiting the 3′-end processing of all cellular pre-mRNAs, including beta interferon pre-mRNA. X-ray crystallography identified the CPSF30-binding pocket on the influenza virus A/Udorn/72 (Ud) NS1A protein and the critical role of two hydrophobic NS1A amino acids outside the pocket, F103 and M106, in stabilizing the CPSF30-NS1A complex. Although the NS1A protein of the 1997 H5N1 influenza A/Hong Kong/483/97 (HK97) virus contains L (not F) at position 103 and I (not M) at position 106, it binds CPSF30 in vivo to a significant extent because cognate (HK97) internal proteins stabilize the CPSF30-NS1A complex in infected cells. Here we show that the cognate HK97 polymerase complex, containing the viral polymerase proteins (PB1, PB2, and PA) and the nucleocapsid protein (NP), is responsible for this stabilization. The noncognate Ud polymerase complex cannot carry out this stabilization, but it can stabilize CPSF30 binding to a mutated (F103L M106I) cognate Ud NS1A protein. These results suggested that the viral polymerase complex is an integral component of the CPSF30-NS1A protein complex in infected cells even when the cognate NS1A protein contains F103 and M106, and we show that this is indeed the case. Finally, we show that cognate PA protein and NP, but not cognate PB1 and PB2 proteins, are required for stabilizing the CPSF30-NS1A complex, indicating that the NS1A protein interacts primarily with its cognate PA protein and NP in a complex that includes the cellular CPSF30 protein.  相似文献   

13.
Rabies virus protein synthesis in infected BHK-21 cells.   总被引:11,自引:9,他引:2       下载免费PDF全文
Rabies virus specific polypeptide synthesis was examined under hypertonic conditions, which selectively inhibit cellular protein synthesis. The rabies virus proteins (L, G, N, M1, M2) were synthesized throughout the course of infection, with little change in their relative rates of synthesis. The rates of synthesis of the G and M1 polypeptides were more sensitive to increasing osmolarity than those of the L, N, and M2 polypeptides. Extrapolation to isotonicity of the results obtained under hypertonic conditions indicated that the molar ratios of the polypeptides synthesized under normal conditions were 0.4 (L), 64 (G), 100 (N), 75 (M1) and 35 (M2). A high-molecular-weight polypeptide (190,000), designated polypeptide L, was repeatedly detected both in infected cells and in extracellular virus. The estimated number of L polypeptide molecules per virion was 33. The synthesis of a viral glycoprotein precursor, designated gp78, , preceded the appearance of the mature viral glycoprotein in infected cells labeled with [3H]glucosamine under isotonic conditions. In cells labeled under hypertonic conditions, little or no mature viral glycoprotein was detected, but a virus-specific glycoprotein with an electrophoretic mobility similar to that of gp78 was observed. This glycoprotein could be chased into mature viral glycoprotein when the hypertonic conditions were made isotonic. These results suggest that a reversible block of viral glycoprotein synthesis occurs under hypertonic conditions.  相似文献   

14.
Characterization of bovine viral diarrhea virus proteins.   总被引:9,自引:8,他引:1       下载免费PDF全文
Virus-specific proteins were examined in cultured cells infected with bovine viral diarrhea virus. By using antisera obtained from virus-infected animals, three major virus-specific polypeptides with molecular weights of 115,000 (115K), 80K, and 55K were observed. Minor proteins of 45,000 and 38,000 daltons were also noted. Tryptic peptide mapping indicated that the 115K and the 80K polypeptides were structurally related. The 55K protein was glycosylated and appeared not to be related to the 115K and 80K proteins. Pulse-chase experiments failed to demonstrate any procursor-product relationship among any of these proteins, and all three polypeptides were found in purified virion preparations. The significance of these findings with respect to the replication of bovine viral diarrhea virus is discussed.  相似文献   

15.
Previous studies have demonstrated that Pichinde virus encodes at least three primary translation products. Using wild-type Pichinde and Munchique viruses and a reassortant between the two, designated RE-2, we were able to assign polypeptides L, GPC, and NP to viral L and S RNAs. The RE-2 virus contains the L RNA of Pichinde virus and the S RNA of Munchique virus. Two-dimensional tryptic peptide mapping of L-[35S]methionine-containing peptides demonstrated that NP and GPC were identical in Munchique and RE-2 viruses, and both differed from the corresponding Pichinde virus tryptic profiles. On the basis of this, NP and GPC must be encoded by viral S RNA. Similar comparisons for L polypeptide demonstrated that L is a virus-specific polypeptide encoded by L RNA.  相似文献   

16.
Purified measles virus was obtained from [35S]methionine-labeled cells infected at 33 degrees C and maintained in the absence of fetal calf serum. The pellet that was produced by a single high-speed ultracentrifuge spin of culture medium contained virus of purity sufficient for structural analysis. Purified virions contain seven polypeptides with estimated molecular weights of: L, 200,000; G, 80,000; P2, 70,000; NP, 60,000; A, 43,000; F1, 41,000; and M, 37,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Treatment of virions with 0.25% trypsin resulted in a less dense particle which lacked polypeptides G and F1. Solubilization of the viral membrane with the detergent Triton X-100 in low-salt buffer resulted in the loss of the G polypeptide, whereas in the presence of 1 M KCl, Triton X-100 also removed most of the M polypeptide. The nucleocapsids (p = 1.3) obtained from virions treated with Triton X-100 and 1 M KCl contained the L, P2, NP, and M polypeptides. Nucleocapsids isolated from the cytoplasm of infected cells were predominantly composed of the NP polypeptide with smaller amounts of either polypeptide P2 or novel polypeptides, related to NP, with estimated molecular weights of 56,000 to 58,000 and 45,000 to 46,000. A significant amount of polypeptide L was always found in association with nucleocapsids isolated either from virions or from the cytoplasm of infected cells. A membrane component containing the viral membrane polypeptides G, F1, and M was also isolated from infected cells. The data presented here thus suggest that L is an integral part of the nucleocapsid complex. In addition, 37,000-molecular-weight polypeptide (M) appears to have the function described for the matrix proteins of other paramyxoviruses.  相似文献   

17.
Schmitt PT  Ray G  Schmitt AP 《Journal of virology》2010,84(24):12810-12823
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.  相似文献   

18.
Sodium butyrate induces the Epstein-Barr virus cycle in latently infected P3HR-1 cells with a high efficiency. This fact was utilized for the metabolic labeling of the Epstein-Barr virus antigens. Nonproducer Raji cells, lacking both early antigen and viral capsid antigen, were used as controls. Immunoprecipitation patterns were compared with 13 anti-Epstein-Barr virus (viral capsid antigen) - positive and 3 negative sera. Sixteen polypeptides were identified as being associated with the lytic Epstein-Barr virus cycle. Their molecular weights ranged from 31,000 (31K) to 275K on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two polypeptides, 158K and 165K, could be classified as late viral products on the basis of their sensitivity to cytosine arabinoside. Six of the polypeptides, i.e., 90K, 95K, 134K, 165K, 236K, and 275K, were detected by [(3)H]glucosamine labeling. Among the early, cytosine arabinoside-insensitive polypeptides detected by [(35)S]methionine labeling, a 152K component appears to be a major constituent of early antigen. This polypeptide was precipitated by all anti-Epstein-Barr virus-positive sera tested. As a rule, together with the 103K and 134K polypeptides, the 152K component is precipitated by anti-early antigen, R (restricted) antibodies. In addition, anti-early antigen D (diffuse) antibodies precipitate 31K, 51K, 65K, and 90K components.  相似文献   

19.
腮腺炎病毒的多肽及其在感染细胞中的合成   总被引:1,自引:0,他引:1  
以差异离心和蔗糖密度梯度离心祛提纯了在鸡胚尿囊腔中繁殖的腮腺炎病毒粒子。并用SDS—PAGE分析病毒粒子的结构多肽,发现其结构多肽为11种,分子量在35K到72K之间。同时还检测到HN蛋白的多聚体和F蛋白的大亚基F1。将腮腺炎病毒分别感染Hela,Vero和CE细胞,比较这三种细胞对ME株腮腺炎病毒的敏感性,发现CE细胞是ME株的敏感宿主。用[31S]蛋氨酸标记病毒感染的CE细胞,以SDS-PAGE及放射自显影法检测到腮腺炎病毒在宿主细胞中合成了至少8种多肽,分子量在26.5K到94K之间。对这些多肽在细胞中不同时期合成情况进行了研究。还用脉冲追踪(pulsechase)技术在感染细胞中发现了FO到F这一转译后加工(Postttanslational procession)现象。此外也研究了放线菌素D和高沈度氯化钠对细胞蛋白质合成的抑制作用。  相似文献   

20.
Measles virus does not turn off host cell polypeptide synthesis, making it difficult to precisely identify the polypeptides specified by the virus during the infectious cycle. By using the technique of immune precipitation with measles-specific antisera, the host cell background has been eliminated, and new observations have been made concerning measles virus polypeptides H, P, NP, F, and M. The H polypeptide is first synthesized as a monomer which is processed by further glycosylation and by the formation of disulfide-bonded dimers. Polypeptide P (70,000 daltons) has been found to occur also as a 65,000-dalton molecule, P2, and both forms of the molecule are equally phosphorylated. Polypeptide NP is processed from a cleavage-sensitive form (which undergoes cleavage during the process of isolation to form polypeptide 6 [41,000 daltons]) to a form which is resistant to this cleavage. The fusion and hemolysin polypeptide is first found in the cells as a 55,000-dalton precursor, F0, which is clearly resolved from the NP polypeptide on gel electrophoresis. The measles virus F0 protein identified in previous reports had not been resolved from the 60,000-dalton NP polypeptide. The M protein occurs in the infected cells as two distinct bands, and, as in the case of Sendai virus, one of these two M protein bands represents a phosphorylated form of the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号