首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The membrane associated endoprotease, hRCE1, is responsible for one step in Ras membrane localization. The “CAAX” sequence at the C-terminal of farnesylated Ras proteins is cleaved by hRCE1 to yield an AAX tri-peptide. We found that an 8-aa K-Ras-derived “CAA” peptide, KSKTKC(farnesyl)VI, was a better substrate for hRCE1 than a KSKTKC(f)VIM “CAAX” peptide. When we examined hRCE1 activity on the same K-Ras core peptide with H-Ras (VLS) or N-Ras (VVM) C-terminal AAX sequences, we also found that in each case, the CAA peptides were better hRCE1 substrates. For each peptide set we examined, the P2′ (A) and P3′ (X) positions appeared independent in influencing hRCE1 activity on peptide substrates. We found that at the P3′ position, methionine was better than serine; while at the P2′ position, isoleucine and valine were better than leucine. Additionally, we found that a similar noncleaved peptide (modified at P′2 with a nitrophenyl group) could act as a competitive inhibitor of the reaction. Thus, hRCE1 has important functional interaction with the P2′ and P3′ substrate positions in addition to the farnesylated cysteine at the scissile bond site. This data could be useful in design of peptidomimetic inhibitors of hRCE1. Such inhibitors may be useful in treatment of cancer and inflammatory disease.  相似文献   

2.
A human gene responsible for one of the steps in Ras post-translational modification and membrane localization, hRCE1, encodes a 35-kDa membrane-associated endoprotease. We examined hRCE1 activity using farnesylated 9 aa peptides with the core sequence, KSKTKC(farnesyl)VIM [(farnesyl) = (f)], from the C-terminus of K-Ras. We first demonstrated hRCE1 specificity in cleavage location and endoproteolysis. We then describe a direct fluorescent microtiter plate assay. We demonstrated that hRCE1 protease cleaved KSKTKC(f)VIM peptides between the C(f) and V positions, generating KSKTKC(f) and the corresponding tripeptides as products. We found that the sequence KSKTKC(f)VI was a better substrate for hRCE1 than KSKTKC(f)VIM. We also found that hRCE1 cleaved modified versions of KSKTKC(f)VIM that incorporated either MCA or ABZ fluorescent chromophores at the N-terminus, and quenching-group-containing amino acids at the V or M, but not the I, amino acid positions of VIM. The quenching-group-containing amino acids used were either Q(S) (dinitrophenyldiaminopropionic acid) or Q(L) (lysine epsilon-dinitrophenyl). Cleavage of KSKTKC(f)VIM and modified versions of this peptide by hRCE1 was initially evaluated by HPLC product resolution and quantitation. The hRCE1 cleavage of quenched peptides enabled us to directly monitor proteolytic activity in a 96-well microtiter fluorescent plate assay. The microtiter format assay was validated by its sensitivity to RPI, an inhibitor of prenyl protein protease. A direct fluorescent assay provides an effective tool for further characterization of this enzyme and also for detection of novel inhibitors.  相似文献   

3.
Kuehnel E  Cencic R  Foeger N  Skern T 《Biochemistry》2004,43(36):11482-11490
The foot-and-mouth disease virus Leader proteinase (L(pro)) frees itself from the growing viral polyprotein by self-processing between its own C-terminus and the N-terminus of the subsequent protein VP4. The ArgLysLeuLys*GlyAlaGlyGln sequence is recognized. The proteinase subsequently cleaves the two isoforms of host cell protein eukaryotic initiation factor (eIF) 4G at the AlaAsnLeuGly*ArgThrThrLeu (eIF4GI) and LeuAsnValGly*SerArgArgSer (eIF4GII) sequences. The enzyme does not, however, recognize the sequence on eIF4GII (AlaAspPheGly*ArgGlnThrPro) which is analogous to that recognized on eIF4GI. To investigate the basis for this specificity, we used site-directed mutagenesis to show that the presence of Phe at the P2 position or Asp at the P3 position severely compromises self-processing. Furthermore, these substitutions also give rise to the production of aberrant cleavage products. As Leu is the preferred amino acid at P2, the specificity of L(pro) is reminiscent of that of cathepsin K. This cellular proteinase can also process collagen through its ability to accept proline at the P2 position. Investigation of the L(pro) substrate specificity showed, however, that in contrast to cathepsin K, L(pro) cannot accept Pro at P2 and does not cleave collagen. Subtle variations in the arrangement of the S2 binding pockets on the enzymes are responsible for these differences in specificity.  相似文献   

4.
The residues P3, P2, P1, and P1' of a peptide corresponding to the matrix/capsid protein junction in the HIV-1 gag protein (Ser-Gln-Asn-Tyr-Pro-Ile-Val) were systematically replaced and the effect of these single amino acid substitutions on the hydrolysis of each peptide by HIV-1 proteinase was studied. Subsites S1 and S1' of the enzyme showed explicit preference for hydrophobic moieties, but beta-branched amino acids and proline are not tolerated in S1. The S2 subsite shows a preference for small polar and apolar amino acids; it may be occupied by Asn, Asp, Glu, Cys, Ala, or Val, other substitutions, especially by Gln and Ser, prevent hydrolysis of the peptides. In subsite S3 all amino acids except proline can be accommodated.  相似文献   

5.
Furanacryloyl-Phe-Gly-Gly has been shown to be a convenient substrate for angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1). A detailed kinetic analysis of the hydrolysis of this substrate indicates normal Michaelis-Menten behavior with kcat = 19000 min-1 and KM = 3.0 x 10(-4) M determined at pH 7.5, 25 degrees C. The enzyme is inhibited by phosphate and activated by chloride; maximal activity is observed with 300 mM NaCl. In the absence of added zinc, activity is lost rapidly below pH 7.5 due to spontaneous dissociation of the metal, but in the presence of zinc, the enzyme remains fully active to about pH 6. The pH-rate profile indicates two groups on the enzyme with apparent pK values of 5.6 and 8.4. The substrate specificity of the enzyme has been examined in terms of the fundamental specificity quantity kcat/KM as well as the separate constants by using a series of furanacryloyl-tripeptides. The activity toward furanacryloyl-Phe-Gly-Gly has been compared with that toward the physiological substrates angiotensin I and bradykinin.  相似文献   

6.
Factor Xa is a central protease in the coagulation cascade and the target for many anticoagulant compounds currently under development. The preferences of the enzyme for substrates incorporating residues N-terminal to the cleavage site (P1, P2, etc.) have been elucidated, but little is known of its preferences for residues C-terminal to the cleavage site (P1', P2', etc.). The preferences of bovine factor Xa for substrate residues in the P1', P2' and P3' positions were mapped using fluorescence-quenched substrates. Bovine factor Xa, often used as a model for factor Xa, was most selective for the P2' position, less selective at the P1' position and almost completely non-selective at the P3' position. It appears that while the prime side subsites of factor Xa impose some selectivity towards substrates, the influence of these sites on factor Xa cleavage specificity is relatively low in comparison to related enzymes such as thrombin.  相似文献   

7.
Inhibitors of human immunodeficiency virus-1(HIV-1) proteinase have been used for several years to treat acquired immunodeficiency syndrome patients. Despite intensive research, however, the substrate specificity of this enzyme is not completely elucidated. Here, we assessed the HIV-1 proteinase P4 to P2 substrate specificity using a bacterial screening system. In this system, the bacterial enzyme β-galactosidase has been transformed into an HIV-1 proteinase substrate by insertion of the p6/PR cleavage site. Consequently, HIV-1 processing can be determined by measuring the β-galactosidase activity on X-gal plates and by examination of the extent of cleavage of the β-galactosidase protein itself. We screened a library containing randomized sequences at the P4 to P2 positions and found strong preferences for Thr, Ser, and Pro at P4, for Leu, Met, and Phe at P3, and for Ser, Met, and Leu at P2. The frequent observations of Thr at P4 and Ser at P2 extend previous findings and offer the possibility of producing inhibitors with different properties. These new data on HIV proteinase specificity illustrate the usefulness of random libraries in the genetic screening system. This approach can be applied to examine any proteinase that has a recognition site extending across several amino acids.  相似文献   

8.
Recent reports have shown a decrease in blood pressure associated with the consumption of flavanol-containing foods. However, the mechanism behind this effect is not yet known. Previously we demonstrated that the flavanol epicatechin and its related oligomers, the procyanidins, inhibit angiotensin I converting enzyme (ACE) activity in vitro. In this study, we further characterized epicatechin monomer, dimer, tetramer and hexamer ACE inhibitory effect, by performing fluorescence quenching and kinetic assays, using angiotensin I as substrate. Assessment of ACE activity in cultured human umbilical vein endothelial cells (HUVEC) indicated that the tetramer was the most active inhibitor decreasing the formation of angiotensin II by 52% (P<0.001). When ACE activity was measured using isolated rabbit lung ACE, dimer, tetramer and hexamer inhibited angiotensin II production at IC(50) values of 97.0, 4.4, and 8.2 microM, respectively. The quenching of ACE tryptophan fluorescence was assayed to evaluate the molecular interaction between ACE and procyanidins. The hexamer was the most active quencher decreasing ACE fluorescence by 56%, followed by the tetramer and the dimer, decreasing ACE fluorescence by 37% and 36%, respectively. ACE activity was evaluated in the presence of different concentrations of the ACE activator chloride ion (Cl(-)). Increased Cl(-) concentrations reduced IC(50) values for the dimer and tetramer. Finally, ACE inhibition was determined in the presence of different albumin concentrations. The presence of albumin did not reverse the ACE inhibition by dimer and tetramer, but decreased hexamer inhibition by 65%. In summary, the inhibitory effect of procyanidins on ACE and the extent of this inhibition were largely dependent on procyanidin structure. ACE inhibition by procyanidins in vivo might provide a mechanism to explain the benefits of flavonoid consumption on cardiovascular diseases.  相似文献   

9.
Escherichia coli lipoproteins with Asp at position 2 remain in the inner membrane, whereas those having other amino acids are targeted to the outer membrane by the Lol system. However, inner membrane lipoproteins without Asp at position 2 are found in other Gram-negative bacteria. MexA of Pseudomonas aeruginosa, an inner membrane-specific lipoprotein involved in multidrug efflux, has Gly at position 2. To identify the residue or region of MexA that functions as an inner membrane retention signal, we constructed chimeric lipoproteins comprising various regions of MexA and an outer membrane lipoprotein, OprM, and analyzed their membrane localization. Lys and Ser at positions 3 and 4, respectively, were found to be critical for the inner membrane localization of MexA in P. aeruginosa. Substitution of these residues with Leu and Ile, which are present in OprM, was sufficient to target the chimeric lipoprotein to the outer membrane and to abolish the ability of MexA to confer drug resistance. The membrane specificity of a model lipoprotein, lipoMalE, a lipidated variant of the periplasmic maltose-binding protein of E. coli, was also determined by the residues at positions 3 and 4 in P. aeruginosa. In contrast to the widely accepted "+2 rule" for E. coli lipoproteins, these results suggest a new "+3, +4 rule" for lipoprotein sorting in P. aeruginosa, namely, the final destination of lipoproteins is determined by the residues at positions 3 and 4.  相似文献   

10.
Though OmpT has been reported to mainly cleave the peptide bond between consecutive basic amino acids, we identified more precise substrate specificity by using a series of modified substrates, termed PRX fusion proteins, consisting of 184 residues. The cleavage site of the substrate PRR was Arg140-Arg141 and the modified substrates PRX substituted all 19 natural amino acids at the P1' site instead of Arg141. OmpT under denaturing conditions (in the presence of 4 M urea) cleaved not only between two consecutive basic amino acids but also at the carboxyl side of Arg140 except for the Arg140-Asp141, -Glu141, and -Pro141 pairs. In addition to Arg140 at the P1 site, similar results were obtained when Lys140 was substituted into the P1 site. In the absence of urea, an aspartic acid residue at the P1' site was unfavorable for OmpT cleavage of synthetic decapeptides, the enzyme showed a preference for a dibasic site.  相似文献   

11.
The diastereomers of adenosine and uridine 2',3'-cyclic phosphorothioates were tested as substrates for 2',3'-cyclic nucleotide 3'-phosphodiesterase from bovine brain. The enzyme cleaves the Sp (or exo) diastereomers efficiently, whereas the Rp (or endo) diastereomers are resistant to hydrolysis, even after long incubation. As the enzyme exhibits strong substrate inhibition the precise determination of kinetic parameters posed problems, particularly with phosphorothioates. The stereoselectivity of this enzyme is opposite to that of RNase T1 and RNase A and thus could be a useful complement in determination of the configuration of nucleoside 2',3'-cyclic phosphorothioates resulting from hydrolysis reactions of unknown stereochemical course.  相似文献   

12.
Dynorphin-converting activity was recently discovered in human cerebrospinal fluid. This enzyme (hCSF-DCE) cleaves dynorphin A, dynorphin B and alpha-neoendorphin to release Leu-enkephalin-Arg6. To characterize the enzyme further we used several protease inhibitors, including N-peptidyl-O-acyl hydroxylamines which are known to act as potent irreversible inhibitors of serine and cysteine proteinases. No irreversible inactivation occurred but strong, reversible effects on the dynorphin-converting activity by some of the inhibitors tested could be observed. Although, hCSF-DCE binds its substrates (dynorphin A and B) in the microM-mM concentration range, it exhibits high specificity in recognizing and cleaving the linkage between the two basic amino acids in the substrate sequence.  相似文献   

13.
Explorations of the S(1') subsite of ACE2 via modifications of the P(1') methylene biphenyl moiety of thiol-based metalloprotease inhibitors led to improvements in ACE2 selectivity versus ACE and NEP, while maintaining potent ACE2 inhibition.  相似文献   

14.
Human ACTH and structurally related peptides, such as ACTH 7–38, ACTH 4–11, ACTH 1–10 and ACTH 18–39, noncompetitively inhibited the activity of angiotensin I converting enzyme (dipeptidyl carboxypeptidase; E.C. 3.4.15.1) in the preparation from canine lung. The Ki values were 1.5 μM and 0.54 μM for ACTH and ACTH 7–38, respectively, using[14C] -Hip-his-leu as the substrate. These results suggest that ACTH and ACTH 7–38 are potent inhibitors of angiotensin I converting enzyme without being substrate for the enzyme.  相似文献   

15.
Bioactive peptides have been defined as specific protein fragments that have numerous biological activities. The aim of this study was to introduce three multifunctional peptides. Hence, we used rabbit lung angiotensin converting enzyme (ACE) inhibitor peptide AFKDEDTEEVPFR to prepare two analogous peptides KDEDTEEVP and KDEDTEEVH. ACE inhibitory, antioxidant, and antimicrobial activities of three synthetic peptides were investigated. Among the three peptides, KDEDTEEVP exhibited the highest ACE inhibitory activity with IC50 value of 69.63 ± 2.51 μM. Furthermore, the results of fluorescence spectroscopy and molecular modeling showed that KDEDTEEVP had more affinity to ACE than other peptides. The peptide of KDEDTEEVH showed the strongest antioxidant scavenging capacity on DPPH radicals (EC50 = 135 ± 9.62 μM), hydroxyl radicals (EC50 = 144 ± 8.73 μM), and ABTS radicals (EC50 = 62 ± 4.52%). Moreover, it showed the highest activity in iron-chelating test (EC50 = 226 ± 14.13 μM) and could also effectively inhibit the peroxidation of linoleic acid. The antimicrobial activity results showed that KDEDTEEVH had higher efficiency against Gram-positive than Gram-negative bacteria with MIC values of higher than 205 ± 10.75 μM. Although there was not a direct correlation between ACE inhibitor and antioxidant activity for analogous peptides, both analogous peptides exhibited more efficiency than the mother peptide. Thus, they can be considered as multifunctional peptides and would be beneficial ingredient to be used in food and drug industry.  相似文献   

16.
An endopeptidase was purified from Archachatina ventricosa by chromatography on columns of gel filtration, DEAE-Sepharose and phenyl-Sepharose. The preparation was shown to be homogeneous by polyacrylamide gel electrophoresis and capillary electrophoresis. The purified enzyme displayed two protein bands on SDS-polyacrylamide gel electrophoresis with estimated molecular weights of 90,000 and 121,000. The protease exhibited maximum proteolytic activity at 55 degrees C and at pH 8.0, but it retained more than 85% of its activity in the pH range 7.5 to 8.5. It was completely inactivated by the chelating agents EDTA and 1,10-phenanthroline which are metalloprotease inhibitors. Studies on substrate specificity showed that only the amide bonds of peptide substrates having a threonine residue at the P1' position were hydrolyzed by the purified protease. This endopeptidase constitutes a novel tool for the study of proteins in view of its narrow and unique substrate specificity.  相似文献   

17.
Somatic angiotensin I converting enzyme (ACE) contains two functional active sites. Up to now, most of the studies aimed at characterizing the selectivity of inhibitors toward the two ACE active sites relied on the use of ACE mutants containing a single functional active site. By developing new fluorogenic synthetic substrates of ACE, we demonstrated that inhibitor selectivity can be assessed directly by using somatic ACE. This useful screening approach led us to discover that some bradykinin potentiating peptides turned out to be selective inhibitors of the C-domain of ACE. The peptide pGlu-Gly-Leu-Pro-Pro-Arg-Pro-Lys-Ile-Pro-Pro, with K(i)(app) values of 30 nM and 8 microM, respectively, for the C- and N-domain of ACE, is to our knowledge the most highly selective C-domain inhibitor of ACE so far reported. Inhibitors able to block selectively either the N- or C-domain of ACE will represent unique tools to probe the function of each domain in the regulation of blood pressure or other physiopathological events involving ACE activity.  相似文献   

18.
U S Vogel  R J Thompson 《FEBS letters》1987,218(2):261-265
We describe the isolation of cDNA clones for bovine brain 2',3'-cyclic-nucleotide 3'-phosphohydrolase (CNPase, EC 3.1.4.37), the third most abundant protein in central nervous system myelin. The cDNA encodes the complete protein (400 amino acids) and hybridizes to a major size species of mRNA in bovine brain tissue, approx. 2.7 kb in size. CNPase mRNA levels do not appear to be affected in quaking dysmyelinating mutant mice. The sequence reveals probable sites for CNPase phosphorylation by cAMP-dependent protein kinase and a region of homology with haemocyanin.  相似文献   

19.
The substrate specifity of adenosine deaminase has been studied using C'-methyl derivatives of adenosine. On the basis of the correlation revealed between conformations of 2'- and 3'-C-methyladenosine and their substrate properties, a modified stereochemical model is suggested: the enzyme accepts the substrate within a N-type conformational range (4E----4T3----3E) of the furanose ring. The model was analysed in details using a number of C3'-modified adenosines and 5'-C-methyladenosine analogues with D-allo- and L-talo-configuration.  相似文献   

20.
Structural modifications to the peptide deformylase inhibitor BB-3497 are described. In this paper, we describe the initial SAR around this lead for modifications to both the P2' and P3' side chains. Enzyme inhibition and antibacterial activity data revealed that a variety of substituents are tolerated at the P2' and P3' positions of the inhibitor backbone. The data from this study highlights the potential for modification at the P2' and P3' positions to optimise the physicochemical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号