首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-adrenergic catecholamine isoproterenol produces a large, rapid, but often a transient, elevation in cellular content of cyclic AMP. We have used the S49 mouse lymphoma cell line, in which genetic variants with specific defects in the pathway of cyclic AMP generation and function have been isolated, to study the increase and subsequent decrease in cyclic AMP levels (termed refractoriness) following incubation of cells with isoproterenol. In wild type S49 cells, isoproterenol produces a peak response in the cellular content of cyclic AMP within 30 min, but the cyclic AMP level falls rapidly thereafter, approaching basal levels by 6 h. Neither inactivation of the drug nor secretion of a nonspecific inhibitor of adenylate cyclase appears to account for the refractoriness. Because isoproterenol refractory cells can still be stimulated by cholera toxin, refractoriness to isoproterenol does not represent a generalized decrease in cellular cyclic AMP response. Particulate preparations from refractory cells have a selective loss of isoproterenol-responsive adenylate cyclase activity, but their activation constants and stereoselectivity for (-)- and (+)-isoproterenol are unaltered. In addition, refractory cells have decreased specific binding of the beta-adrenergic antagonist [125I]iodohydroxybenzylpindolol. This decrease appears to represent a reduction in the number, but not the affinity, of beta-adrenergic receptor sites. Similar studies in an S49 clone that lacks the enzyme cyclic AMP-dependent protein kinase yield essentially identical findings. Because kinase-deficient cells do not induce the cyclic AMP-degrading enzyme phosphodiesterase after the cellular content of cyclic AMP is increased, induced of phosphodiesterase cannot account for refractoriness to isoproterenol. Cyclic AMP-dependent protein kinase does not appear to be required for either the decrease in beta-adrenergic receptors and isoproterenol-responsive adenylate cyclase, nor does it appear to be required for the development of refractoriness to isoproterenol. In contrast, an S49 clone lacking hormone-responsive adenylate cyclase activity but retaining beta-adrenergic receptors does not appear to lose receptors after being incubated with isoproterenol, either alone or together with dibutyryl cyclic AMP. Therefore, in this clone, receptor occupancy alone or in combination with elevated cyclic AMP levels is insufficient to cause refractoriness. Refractoriness thus appears to require intact adenylate cyclase. This suggests that adenylate cyclase may exert regulatory controls on beta-adrenergic receptors in addition to generation of cyclic AMP.  相似文献   

2.
Conventional homogenizing methods produced membrane preparations of canine trachealis airway smooth muscle which contained adenylate cyclase activity that was stimulated by fluoride but not by isoproterenol. We have devised methods using collagenase digestion of minced trachealis which destroy most of the tough connective tissues but leave dissociated canine trachealis cells in suspension. Gentle homogenization of these cells permitted preparation of a particulate fraction containing adenylate cyclase that was readily stimulated by beta-adrenergic agonist of prostaglandin E2. Isoproterenol stimulation was 2.34 +/- 0.58 (S.E.) times basal and 122 +/- 25% of the stimulation induced by NaF. The beta-adrenergic blocking agent propranolol prevented isoproterenol-induced stimulation of the cyclase but had no effect on prostaglandin E2 stimulation. Catecholamine order of potency was isoproterenol greater than epinephrine greater than norepinephrine. These methods enable demonstration of stimulatory effects of hormones in broken cell preparations of airway smooth muscle that are comparable to those when hormone-stimulated cyclic AMP formation is measured in intact muscle strips.  相似文献   

3.
Responsiveness to catecholamines was studied in two different strains of rat glioma C6 cells. The C6 cells of low passage possessed a high capacity to accumulate cyclic AMP in response to (-)-isoproterenol. Cholera toxin was also able to stimulate cyclic AMP accumulation in these cells. High passage C6 cells were unresponsive to (-)-isoproterenol or to cholera toxin except in the presence of a high concentration of phosphodiesterase inhibitor. The affinity of beta-adrenergic receptors on both strains for (-) [3H] dihydroalprenolol was similar; however, C6 low passage possessed several times the number of beta-adrenergic receptors found in C6 high passage. This difference correlated with the difference found in (-)-isoproterenol-stimulated adenylate cyclase between C6 low passage and high passage. The sodium fluoride-stimulated adenylate cyclase was similar in both strains. Cyclic AMP phosphodiesterase activity was 2-3 times higher in homogenates of C6 high passage than in low passage. In intact cells, the rate of breakdown of cyclic AMP was 5-times faster in C6 high passage than in low passage. Thus, differences in beta-adrenergic receptor number and phosphodiesterase activity explain in part the lack of responsiveness of C6 high passage. Our studies indicate that continuous subculturing of rat glioma C6 cells led to complex alterations in the beta-adrenergic receptor-adenylate cyclase system.  相似文献   

4.
Intact human parathyroid hormone, hPTH [1-84], and the hPTH [1-34] fragment stimulated membrane-associated protein kinase C (PKC) activity in immortalized (but still differentiation-competent) murine BALB/MK-2 skin keratinocytes. Unexpectedly, the hormone and its fragment did not stimulate adenylate cyclase. The failure of PTH to stimulate adenylate cyclase activity was not due to the lack of a functioning receptor-cyclase coupling mechanism because the cells were stimulated to synthesize cyclic adenosine monophosphate (cyclic AMP) by the beta-adrenergic drug isoproterenol. Thus, skin keratinocytes seem to have an unconventional PTH receptor that is coupled to a PKC-activating mechanism but not to adenylate cyclase. These observations suggest that normal and neoplastic skin keratinocytes respond to the PTH-related peptide that they make and secrete.  相似文献   

5.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
In mature animals, thyroid hormone produces parallel up-regulation of beta-adrenergic receptor binding sites and their linkage to adenylate cyclase; during development, these same processes may be critical in establishing the set-point for subsequent adrenergic reactivity. In the current study, we administered triiodothyronine to neonatal rats for the first five days postpartum and evaluated [125I]pindolol binding capabilities and adenylate cyclase activity in membrane preparations from heart and kidney. In the heart, hyperthyroidism elicited an initial increase in receptor density, with subsequent deficits and an eventual return to normal values by young adulthood. In contrast, the ability of isoproterenol, a beta-adrenergic agonist, to stimulate adenylate cyclase was enhanced regardless of whether receptor numbers were increased or decreased; the same effects were also present for basal adenylate cyclase activity and non-receptor-mediated stimulation by forskolin. Enhanced cyclase activity involved both increases in the magnitude of response as well as accelerated onset of the postweaning peak of enzyme activity, results which suggest a direct impact of thyroid status on the ontogenetic expression of adenylate cyclase itself. The kidney, which possesses less efficient beta-receptor coupling to adenylate cyclase in the neonate, was less drastically affected by triiodothyronine for either beta-receptor binding sites or enzyme activity. As we had previously shown that neonatal hyperthyroidism uncouples beta-receptors from growth-related enzymes, such as ornithine decarboxylase, we also evaluated whether the promotion of adenylate cyclase responses was mechanistically linked to effect on ornithine decarboxylase; administration of cyclic AMP analogs to 5 days-old rats led to inhibition of the enzyme in the heart, whereas the same treatment in 9 days-old animals was ineffective. These data suggest that thyroid hormone differentially regulates the development of beta-receptors as well as adenylate cyclase and ornithine decarboxylase, with preferential effects on tissues, such as the heart, that already possess efficient linkage of the receptors to cell transduction mechanisms at birth.  相似文献   

7.
Loss of gonadotropin receptors in murine Leydig tumor cells and of beta-adrenergic receptors in rat glioma C6 cells occurred following exposure of the cells to human chorionic gonadotropin and isoproterenol, respectively. Down-regulation of receptors was mimicked in part by other agents that elevated cyclic AMP levels in the cells such as cholera toxin and dibutyryl cyclic AMP. Whereas agonist-mediated receptor loss was rapid and almost total, down-regulation by cyclic AMP was slower and less extensive. Down-regulation of receptors did not appear to be accompanied by loss of the regulatory and catalytic components of adenylate cyclase. Hormone-mediated down-regulation was preceded by desensitization of hormone-stimulated adenylate cyclase. In contrast, there was no evidence that cyclic AMP caused desensitization. Finally, loss of receptors induced either by agonists or cyclic AMP required protein synthesis as cycloheximide inhibited down-regulation. We conclude that down-regulation of receptors in these cells is a complex process involving both cyclic AMP-independent and -dependent events.  相似文献   

8.
The role of cyclic AMP in stimulus-secretion coupling with investigated in rat parotid tissue slices in vitro. Isoproterenol and norepinephrine stimulated a rapid intracellular accumulation of cyclic AMP, which reached a maximum level of 20-30 times the control value by 5 to 10 min after addition of the drug. Isoproterenol was approximately ten times more potent in stimulating both alpha-amylase release and cyclic AMP accumulation than were norepinephrine and epinephrine, which had nearly equal effects on these two parameters. Salbutamol and phenylephrine were less effectivema parallel order of potency and sensitivity was observed for the stimulation of adenylate cyclase activity in a washed particulate fractionmthe results suggest that these drugs are acting on a parotid acinar cell through a beta1-adrenergic mechanismmat the lowest concentrations tested, each of the adrenergic agonists stimulated significant alpha-anylase release with no detectable stimulation of cyclic AMP accumulationmeven in the presence of theophylline, phenylephrine at several concentrations increased alpha-amylase release without a detectable increase in cyclic AMP levels. However, phenylephrine did stimulate adenylate cyclase. These data suggest that, under certain conditions, large increases in the intra-cellular concentration of cyclic AMP may not be necessary for stimulation of alpha-amylase release by adrenergic agonists. Also consistent with this idea was the observation that stimulation of cyclic AMP accumulation by isoproterenol was much more sensitive to inhibition by propranolol than was the stimulation of alpha-amylase release by isoproterenol. Stimulation of alpha-amylase release by phenylephrine was only partially blocked by either alpha- or beta-adrenergic blocking agents, whereas stimulation of adenylate cyclase by phenylephrine was blocked by propranolol and not by phentolaminemphenoxybenzamine and phentolamine potentiated the effects of norepinephrine and isoproterenol on both cyclic AMP accumulation and alpha-amylase release by N-6,O-2'-dibutyryl adenosine 3',5'-monophosphate; These observations may indicate a non-specific action of phenoxybenzamine, and demonstrate the need for caution in interpreting evidence obtained using alpha-adrenergic blocking agents as tools for investigation of alpha- and beta-adrenergic antagonism.  相似文献   

9.
Carbachol antagonizes isoproterenol-stimulable cyclic AMP accumulation in mouse atria by direct activation of cardiac muscarinic receptors. Inhibition by carbachol occurs rapidly and is completely reversed when the drug is removed. Neither nitroprusside nor 8-bromo-cyclic GMP mimics the actions of carbachol and low concentrations of carbachol block cyclic AMP accumulation without increasing the intracellular cyclic GMP content. Carbachol does not block cyclic AMP accumulation by activating phosphodiesterase since it is fully effective in the face of marked phosphodiesterase inhibition, nor does it appear to inhibit the catalytic activity of adenylate cyclase since it does not decrease either basal or cholera toxin-stimulated cyclic AMP accumulation. The interaction between carbachol and isoproterenol is not competitive, since cholinergic inhibition cannot be surmounted by increasing concentrations of isoproterenol. The site of muscarinic action therefore appears to involve the mechanisms coupling the hormone-receptor complex to adenylate cyclase. This site is distinct from that of cholera toxin action since there is no antagonism between the effects of cholera toxin and carbachol on cyclic AMP metabolism in the atrium.  相似文献   

10.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

11.
Manipulation of the hypothalamic-pituitary-adrenal axis selectively alters alpha-adrenergic potentiation of the cyclic AMP response to beta-adrenergic receptor stimulation in rat cerebral cortex. Calcium has been implicated in this alpha-receptor-mediated response, which may involve activation of phospholipases A2 and C and/or calmodulin-dependent adenylate cyclase. We therefore investigated the effects of stress and corticosterone (CORT) on membrane calmodulin-dependent adenylate cyclase and noradrenaline-stimulated cyclic AMP accumulation in brain slices. Repeated stress for 21 days selectively attenuated the adenylate cyclase response to calcium/calmodulin in cerebral cortex membranes, without affecting basal or forskolin-stimulated enzyme activity. There was no such effect in hippocampal membranes. The same pattern of response was elicited by daily CORT injection (50 mg/kg s.c.) for 21 days, while vehicle injection had no effect. CORT in the drinking water (400 micrograms/ml) elicited the same reduction of body weight as CORT injections, but had no effect on calmodulin adenylate cyclase. In parallel with calmodulin adenylate cyclase, cyclic AMP accumulation elicited by noradrenaline in slices of cerebral cortex was suppressed by both stress and daily CORT injections, with smaller effects observed with CORT in the drinking water. Unlike calmodulin adenylate cyclase, noradrenaline-stimulated cyclic AMP accumulation in hippocampus showed the same suppression as that in cerebral cortex. These results are discussed in relation to the differential mode of coupling of alpha-adrenergic receptors to cyclic AMP-generating systems between brain regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Release of [14C]glucosamine-labelled mucins was studied in vitro using well-characterised preparations of rat submandibular acini. Mucin release was stimulated by forskolin, an activator of the catalytic subunit of adenylate cyclase, and 3-isobutyl-1-methylxanthine (IBMX), a cyclic nucleotide phosphodiesterase inhibitor. Both stimulated in a dose-dependent manner to the same maximum as that seen with isoproterenol. Neither forskolin nor IBMX added in the presence of isoproterenol increased secretion above the maximum in response to isoproterenol alone, suggesting a similar mechanism of action, mediated by cyclic AMP. Prior exposure of acini to isoproterenol (10 microM) for 45 min, followed by washout resulted in (a) persistent increase in basal secretion which was abolished by propranolol and (b) reduced stimulation of mucin secretion in response to either a second isoproterenol challenge, noradrenaline or forskolin. Thus, exposure of rat submandibular acini in vitro desensitizes the cells to subsequent stimulation. Although this mimics the decreased beta-adrenergic secretory responses seen in submandibular cells from cystic fibrosis patients, results suggest that the isoproterenol-induced desensitization is at the level of beta-receptor and adenylate cyclase, rather than distal to cyclic AMP.  相似文献   

13.
The direct effects of chronic ethanol exposure on adenylate cyclase activity and cyclic AMP content were investigated in primary cerebellar cultures. By morphological criteria these cultures mainly contain granule cells with some astrocytes, and each cell type appears to contain both beta-adrenergic and adenosine-sensitive adenylate cyclase systems. Chronic treatment of the primary cerebellar cultures with 120 mM ethanol for 6 days caused a reduction in the stimulation of cyclic AMP content by isoproterenol and by the adenosine analogue 2-chloroadenosine. Kinetic analysis indicated that the chronic ethanol treatment decreased maximal activation of adenylate cyclase, as well as increased the EC50 values for norepinephrine and 2-chloroadenosine. Activation of norepinephrine-stimulated adenylate cyclase activity by in vitro ethanol was significantly enhanced after the chronic ethanol exposure. However, the chronic treatment did not alter activation of the 2-chloroadenosine-stimulated enzyme by in vitro ethanol. A similar difference in the response to in vitro ethanol after the chronic treatment was observed when cyclic AMP content of the intact cells was measured. The present data indicate that chronic ethanol exposure causes a selective increase in the sensitivity of adenylate cyclase to ethanol in some brain cells and a more generalized desensitization of receptor-stimulated cyclic AMP production.  相似文献   

14.
A doubly transformed rat glioma cell line, designated C6V-1, was obtained from rat glioma C6 cells by infection with a rat-adapted variant of Moloney sarcoma virus (MSV-M-os). The C6V-1 cells show karyotypic changes in chromosome number (43) and structure, while C6 cells possess a normal male karyotype. C6V-1 and C6 cells were employed for characterization of a receptor-adenylate cyclase system of the surface membrane. C6V-1 cells showed lower adenylate cyclase activity than that of C6 cells, though the apparent Km for ATP in both types of cells was the same. The maximal stimulation of adenylate cyclase by isoproterenol was significantly reduced, and Kact for isoproterenol was approximately 18-fold lower in C6V-1 cells. When the concentration of beta-adrenergic receptors was measured by various concentrations of [3H] dihydroalprenolol (DHA), the maximal binding sites of C6 and C6V-1 cells were 760 and 230 fmol/mg protein, respectively, without any changes in the association constant for DHA. The concentration of isoproterenol required for 50% displacement of the [3H] DHA binding (Kd) was the same (around 1.5 X 10(-6)M) in both cells, measured in the presence of GTP. Thus the 19-fold drop in the Kd/Kact ratio in C6V-1 cells suggests an incomplete coupling of beta-receptors to adenylate cyclase. Cyclic AMP phosphodiesterase activity and cAMP content in C6V-1 were lower than in C6 cells. Mitochondrial monoamine oxidase and cytosomal enolase activities, however, were somewhat higher in C6V-1 cells. The results indicate that a set of changes in the receptors and in the cyclic AMP system of C6V-1 is one of the specific alterations by transformation, even though those may not be the cause of cell transformation.  相似文献   

15.
Exposure to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA, 100nM) for 10 minutes enhanced cyclic AMP accumulation in human neutrophils under basal conditions and in response to the beta-adrenergic receptor agonist isoproterenol (ISO), 1 microM) and the adenylate cyclase activator forskolin (FSK, 10mM). Potentiation of responses to ISO by PMA was dose-dependent between 0.1 and 100nM PMA. The diacylglycerol analogue, 1-oleoyl-2-acetylglycerol (OAG) (50 microM) also elevated beta-receptor responses, but 4 beta-phorbol (100nM), lacking the capacity to activate PMA, was ineffective. Short-term exposure (12 seconds) to the peptide n-formylmethionine leucyl-phenylalanine (FMLP, 1 microM) also elevated neutrophil cyclic AMP accumulation. All potentiating effects of PMA on cyclic AMP production were inhibited by the protein kinase inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7). Elevation of cyclic AMP by FMLP was insensitive to H7. PMA had no apparent effect on beta-receptor agonist-affinity, distribution between cell-surface and internalised compartments, or the capacity of ISO to induce beta-receptor internalisation. Responses to FSK or ISO in terms of fold-stimulation of basal cyclic AMP accumulation in the presence of PMA were not elevated by PMA. These findings indicate that PMA exerts a potentiating effect on neutrophil adenylate cyclase responses through protein kinase C activation. FMLP elevation of neutrophil cyclic AMP in the absence of other stimuli, appears however, to be insensitive to protein kinase inhibition.  相似文献   

16.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

17.
The pretreatment of rat prostatic epithelial cells with 4 beta-phorbol 12-myristate 13-acetate resulted in an attenuation of beta-adrenergic stimulated cyclic AMP accumulation. The effect was dependent on time and concentration. The maximal extent of isoproterenol stimulation of cyclic AMP production was reduced by 35% after 15-min pretreatment with the phorbol ester at 25 degrees C. Since a similar action was exerted by other protein kinase C stimulators, present results suggest the involvement of this enzyme in a process of desensitization to beta-adrenergic agonists of the adenylate cyclase system in rat prostatic epithelium.  相似文献   

18.
The effect on lactose production of several external modulators of intracellular cyclic AMP was studied in rat mammary gland tissue slices and explants. Adrenaline, a beta-adrenergic receptor effector, forskolin, a direct adenylate cyclase activator and fluphenazine, a calmodulin inhibitor, all produced an increase in the intracellular level of cyclic AMP and a concomitant inhibition of lactose production. These results suggest a role for adrenaline and calmodulin in modulating cyclic AMP levels in mammary tissue during the lactogenic cycle.  相似文献   

19.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

20.
The stimulations of cyclic AMP formation and adenylate cyclase activity by glucagon and isoproterenol were both found to be highest in neonatal rat hepatocytes and to decrease during development. Adult hepatocytes still showed a considerable response to glucagon, but a negligible response to isoproterenol. The decrease in cyclic AMP formation during development can be explained in the case of the response to beta-adrenergic agonist as due to decrease of its receptor number, judging from binding of [125I]iodocyanopindolol to purified plasma membranes. But in the case of the glucagon response, the decrease in the response may be due to change of post-receptor components of the adenylate cyclase system, because the receptor number tended to increase during development, as shown by binding of [125I]iodoglucagon. Similarly, alpha 1-adrenergic receptors increased in number during development, but their IC50 value did not change, as measured by binding of [3H]prazosin to plasma membranes. Previous studies on primary cultures of adult rat hepatocytes showed that the beta-adrenergic response and its receptor number increased markedly during short-term culture (Nakamura, T., Tomomura, A., Noda, C., Shimoji, M., & Ichihara, A. (1983) J. Biol. Chem. 258, 9283-9289). However, in this work the amount of alpha 1-adrenergic receptor of adult rat hepatocytes was found to decrease by one third during 1-2 days culture. Therefore, changes of alpha 1- and beta-adrenergic receptors during development of rat liver and during primary culture of adult rat hepatocytes were reciprocal, although the directions of change in the two conditions were opposite. The additions of various hormones to primary cultures of adult rat hepatocytes did not affect the reciprocal changes of adrenergic receptors, suggesting that these hormones did not regulate the changes of the receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号