首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the effect of elbow joint position on electromyographic (EMG) and mechanomyographic (MMG) activities of agonist and antagonist muscles in young and old women. Surface EMG and MMG were recorded from the triceps and biceps brachii, and brachioradialis muscles during isometric elbow extensions in young and old women. The measurements were carried out at an optimal joint angle (A(o)), as well as at smaller (A(s) = A(o) - 30 degrees ) and larger (A(l) = A(o) + 30 degrees ) angles. The normalized to force EMG amplitude (RMS-EMG/F) was smaller in old women compared to young in all muscles. The RMS-EMG/F of the triceps brachii muscle was not affected by muscle length while that of the biceps brachii and brachioradialis muscles increased at shortest muscle length in both groups. The normalized to force MMG amplitude (RMS-MMG/F) was smaller in old than in young in the triceps brachii muscle only. There was an increase in RMS-MMG/F with triceps brachii and biceps brachii muscle shortening in both groups, and in the brachioradialis muscle -- in young only. Compared to young, older women exhibited a bigger force fluctuation during maximum voluntary contraction, but these did not contribute significantly to the RMS-MMG. Skinfold thickness accounted for the RMS-EMG/F and RMS-MMG/F differences seen between old and young women in the biceps brachii muscle only. It is concluded that, the EMG and MMG response to muscles length change in agonist and antagonist muscles is generally similar in old and young women but the optimal angle shifts toward a bigger value in older women.  相似文献   

2.
The purpose of the study was to determine the association between steadiness and activation of the agonist and antagonist muscles during isometric and anisometric contractions. Young (n = 14) and old (n = 15) adults used the first dorsal interosseus muscle to perform constant-force and constant-load tasks (2.5, 5, 20, 50, and 75% maximum) with the left index finger. Steadiness was quantified as the coefficient of variation of force and the SD of acceleration normalized to the load lifted. The old adults were less steady at most target forces with isometric contractions (2.5, 5, and 50%) and with most loads during the anisometric contractions (2.5, 5, and 20%). Furthermore, the old adults were less steady when performing lengthening contractions (up to 50%) compared with shortening contractions, whereas there was no difference for young adults. The reduced steadiness exhibited by the old adults during these tasks was not associated with differences in the average level of agonist muscle electromyogram or with coactivation of the antagonist muscle.  相似文献   

3.
The purpose of this study was to determine if differences exist between the control strategies of two antagonist thigh muscles during knee flexion and extension muscular coactivation. Surface myoelectric signal (MES) of the quadriceps (rectus femoris) and the hamstrings (semitendinosus) were obtained from both muscles while performing step-wise increasing contractions during flexion and extension with the knee at 1.57 rad of flexion (90 degrees). The median frequency of the power density spectrum, which is related to the average muscle fiber action potential conduction velocity and therefore to motor unit recruitment, was calculated from each MES. The results suggest that, in all the subjects tested, when the muscle acts as antagonist most motor units are recruited up to 50% of the maximal voluntary force, whereas when the muscle acts as antagonist motor units are recruited up to 40% of the maximal voluntary force. The force range past 40–50% of the maximal force is also characterized by differences between the agonist/antagonist.  相似文献   

4.
This study compared the steadiness of submaximal contractions with the knee extensor muscles in young and old adults. Twenty young and twenty old subjects underwent assessment of isometric maximum voluntary contraction (MVC), one-repetition maximum (1-RM) strength, and steadiness during isometric, concentric, and eccentric contractions with the knee extensor muscles. The old adults displayed 33% lower MVC force and a 41% lower 1-RM load. The coefficient of variation for force was significantly greater for the old adults during isometric contractions at 2, 5, and 10% of MVC but not at 50% MVC. The decline in steadiness at low forces experienced by the men was marginally greater than that experienced by the women. The steadiness of concentric and eccentric contractions was similar in young and old adults at 5, 10, and 50% of 1-RM load. Old subjects exhibited greater coactivation of an antagonist muscle compared with young subjects during the submaximal isometric and anisometric contractions. These results indicate that, whereas the ability to exert steady submaximal forces with the knee extensor muscles was reduced in old adults, fluctuations in knee joint angle during slow movements were similar for young and old adults.  相似文献   

5.
Although force fluctuations during a steady contraction are often heightened in old adults compared with young adults and are enhanced in young adults during the stress response, the mechanisms underlying the augmentation are uncertain. The purpose of the study was to compare the effect of a stressor on the plasma concentrations of selected stress hormones and on the force fluctuations experienced by young and old adults during the performance of a precision grip. Thirty-six men and women (19-86 yr) participated in a protocol that comprised anticipatory (30 min), stressor (15 min), and recovery periods (25 min). The stressor was a series of noxious electrical stimuli applied to the dorsal surface of the left hand. Subjects sustained a pinch-grip force with the right hand at 2% of the maximal voluntary contraction force. The fluctuations in pinch-grip force, the interference electromyogram (EMG) of six muscles, and the spectra for the force and EMG were quantified across the 70-min protocol. The stressor increased the force fluctuations, largely due to an enhancement of the power at 1-2 Hz in the force spectrum (r(2) = 0.46). The effect was greatest for the old adults compared with young and middle-aged adults. The plasma concentrations of the stress hormones (adrenocorticotropin, epinephrine, and norepinephrine) were elevated to similar levels for all three age groups, and the changes were not associated with modulation of the force fluctuations. Furthermore, the heightened EMG activity exhibited by the old adults during all periods was not related to the changes in the force fluctuations or the 1- to 2-Hz force oscillations. The absence of a change in the mean pinch-grip force during the protocol and the lack of an association between elevation of the plasma concentrations for the stress hormones and modulation of the force fluctuations suggest that the enhanced force fluctuations caused by the stressor was due to an increase in the low-frequency output of the spinal motor neurons.  相似文献   

6.
This study examined the patterns of activation in the superficial and deep parts of the first dorsal interosseus muscle and in the antagonist muscle, second palmar interosseus, during postural tasks (position holding) and slow movements (position tracking) of the index finger performed by young and old adults. The position-tracking task involved the index finger lifting light loads (2.5, 10, and 35% of maximum) with shortening and lengthening contractions as steadily as possible. Steadiness was quantified in both tasks as the standard deviation of index finger acceleration. The fluctuations in acceleration during the two tasks were greater for the old subjects (62-72 yr) compared with young subjects (19-27 yr), especially with the lightest loads. The two groups of subjects activated the superficial and deep parts of first dorsal interosseus at similar intensities during the position-holding task, whereas the deep part was more active during the shortening and lengthening contractions of the position-tracking task. The nonuniform activation of first dorsal interosseus, therefore, was not associated with the difference in the standard deviation of acceleration between the young and old subjects. Furthermore, there was no association between the average level of coactivation by the antagonist muscle and the standard deviation of acceleration for either group of subjects across these tasks. Thus the greater variability in motor output exhibited by the older adults could not be explained by either the nonuniform activation of the agonist muscle or the average level of coactivation by the antagonist muscle.  相似文献   

7.
The purpose was to compare the time to failure and muscle activation patterns for a sustained isometric submaximal contraction with the dorsiflexor muscles when the foot was restrained to a force transducer (force task) compared with supporting an equivalent inertial load and unrestrained (position task). Fifteen men and women (mean+/-SD; 21.1+/-1.4 yr) performed the force and position tasks at 20% maximal voluntary contraction force until task failure. Maximal voluntary contraction force performed before the force and position tasks was similar (333+/-71 vs. 334+/-65 N), but the time to task failure was briefer for the position task (10.0+/-6.2 vs. 21.3+/-17.8 min, P<0.05). The rate of increase in agonist root-mean-square electromyogram (EMG), EMG bursting activity, rating of perceived exertion, fluctuations in motor output, mean arterial pressure, and heart rate during the fatiguing contraction was greater for the position task. EMG activity of the vastus lateralis (lower leg stabilizer) and medial gastrocnemius (antagonist) increased more rapidly during the position task, but coactivation ratios (agonist vs. antagonist) were similar during the two tasks. Thus the difference in time to failure for the two tasks with the dorsiflexor muscles involved a greater level of neural activity and rate of motor unit recruitment during the position task, but did not involve a difference in coactivation. These findings have implications for rehabilitation and ergonomics in minimizing fatigue during prolonged activation of the dorsiflexor muscles.  相似文献   

8.
Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30 degrees x s(-1). The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.  相似文献   

9.

This study used a micromechanical finite element muscle model to investigate the effects of the redistribution of spatial activation patterns in young and old muscle. The geometry consisted of a bundle of 19 active muscle fibers encased in endomysium sheets, surrounded by passive tissue to model a fascicle. Force was induced by activating combinations of the 19 active muscle fibers. The spacial clustering of muscle fibers modeled in this study showed unbalanced strains suggesting tissue damage at higher strain levels may occur during higher levels of activation and/or during dynamic conditions. These patterns of motor unit remodeling are one of the consequences of motor unit loss and reinnervation associated with aging. The results did not reveal evident quantitative changes in force transmission between old and young adults, but the patterns of stress and strain distribution were affected, suggesting an uneven distribution of the forces may occur within the fascicle that could provide a mechanism for muscle injury in older muscle.

  相似文献   

10.
In addition to the role of muscle coactivation, a major question in the field is how antagonist activation is controlled to minimize its opposing effect on agonist muscle performance. Muscle fatigue is an interesting condition to analyze the neural adjustments in antagonist muscle activity and to gain more insights into the control mechanisms of coactivation. In that context, previous studies have reported that although the EMG activity of agonists and antagonists increase in parallel, the ratio between EMG activities in the two sets of muscles during a fatiguing submaximal contraction decreased progressively and contributed to a reduction in the time to task failure. In contrast, more recent studies using a novel normalization procedure indicated that the agonist/antagonist ratio remained relatively constant, suggesting that the fatigue-related increase in coactivation does not impede performance. Current knowledge also indicates that peripheral mechanisms cannot by themselves mediate the intensity of antagonist coactivation during fatiguing contractions, implying that supraspinal mechanisms are involved. The unique modulation of the synaptic input from Ia afferents to the antagonist motor neurones during a fatiguing contraction of the agonist muscles further suggests a separate control of the two sets of muscles.  相似文献   

11.
Antagonist coactivation is the simultaneous activation of agonist and antagonist muscles during a motor task. Age-related changes in coactivation may contribute to observed differences in muscle performance between children and adults. Our aim was to systematically summarize age-related differences in antagonist muscle coactivation during multi-joint dynamic and single-joint isometric and isokinetic contractions. Electronic databases were searched for peer-reviewed studies comparing coactivation in upper or lower extremity muscles between healthy children and adolescents/young adults. Of the 1083 studies initially identified, 25 met eligibility criteria. Thirteen studies examined multi-joint dynamic movements, 10 single-joint isometric contractions, and 2 single-joint isokinetic contractions. Of the studies investigating multi-joint dynamic contractions, 83% (11/13 studies) reported at least one significant age-related difference: In 84% (9/11 studies) coactivation was higher in children, whereas 16% (2/11 studies) reported higher coactivation in adults. Among single-joint contractions, only 25% (3/12 studies) reported significantly higher coactivation in children. Fifty six percent of studies examined females, with no clear sex-related differences. Child-adult differences in coactivation appear to be more prevalent during multi-joint dynamic contractions, where generally, coactivation is higher in children. When examining child–adult differences in muscle function, it is important to consider potential age-related differences in coactivation, specifically during multi-joint dynamic contractions.  相似文献   

12.
Mechanical properties of the muscle-tendon unit change with aging, but it is not known how these modifications influence the control of lower leg muscles during upright stance. In this study, young and elderly adults stood upright on a force platform with and without vision while muscle architecture and myotendinous junction movements (expressed relative to the change in the moment on the x-axis of the force platform) were recorded by ultrasonography and muscle activity by electromyography. The results show that the maximal amplitude of the sway in the antero-posterior direction was greater in elderly adults (age effect, P < 0.05) and was accompanied by an increase in lower leg muscle activity compared with young adults. Moreover, the data highlight that fascicles shorten during forward sway and lengthen during backward sways but more so for young (-4 ± 3 and -4 ± 3 mm/Nm, respectively) than elderly adults (-0.7 ± 3 and 0.8 ± 3 mm/Nm, respectively; age × sway, P < 0.001). Concurrently, the pennation angle increased and decreased during forward and backward sways, respectively, with greater changes in young than elderly adults (age × sway, P < 0.001). In contrast, no significant differences were observed between age groups for tendon lengthening and shortening during sways. The results indicate that, compared with young, elderly adults increase the stiffness of the muscular portion of the muscle-tendon unit during upright stance that may compensate for the age-related decrease in tendon stiffness. These observations suggest a shift in the control strategy used to maintain balance.  相似文献   

13.
Ageing is associated with a higher fatigue resistance during submaximal or maximal fatiguing contractions. The present study aimed to investigate the contribution of the central and peripheral fatigue to the age-related differences in fatigue development of the plantar flexor muscles. Therefore, the voluntary activation, rest twitch moment and voluntary plantar flexor moment were examined before during as well as 2, 5 and 10min after a fatiguing task. This consisted of intermittent isometric submaximal plantar flexor contractions at equal intensity for both young and old adults (considering the age-related differences in muscle inhibition). Consequently, possible differences between young and old adults in voluntary activation during the maximal contraction utilised for determining the intensity of the fatiguing task, which can influence fatigue development, have been taken into account. The plantar flexors moment was calculated using inverse dynamics and the voluntary activation was measured using the twitch interpolation technique. Changes in voluntary activation and rest twitch moment during the fatiguing task were used to assess central and peripheral fatigue, respectively. In both young and old adults, peripheral ( approximately 20%) as well as central fatigue ( approximately 9%) contributed to the time to task failure. Old adults demonstrated greater time to task failure than young ones, but similar voluntary activation behaviour during the fatiguing task. We concluded that, the age-related enhancement in fatigue resistance is not attributable to voluntary activation but is linked to mechanisms located within the working muscle.  相似文献   

14.
The aim of the present study was to determine how the intra-muscular segments of three shoulder muscles were coordinated to produce isometric force impulses around the shoulder joint and how muscle segment coordination was influenced by changes in movement direction, mechanical line of action and moment arm (ma). Twenty male subjects (mean age 22 years; range 18-30 years) with no known history of shoulder pathologies, volunteered to participate in this experiment. Utilising an electromyographic technique, the timing and intensity of contraction within 19 muscle segments of three superficial shoulder muscles (Pectoralis Major, Deltoid and Latissimus Dorsi) were studied and compared during the production of rapid (e.g. approximately 400ms time to peak) isometric force impulses in four different movement directions of the shoulder joint (flexion, extension, abduction and adduction). The results of this investigation have suggested that the timing and intensity of each muscle segment's activation was coordinated across muscles and influenced by the muscle segment's moment arm and its mechanical line of action in relation to the intended direction of shoulder movement (e.g. flexion, extension, abduction or adduction). There was also evidence that motor unit task groups were formed for individual motor tasks which comprise motor units from both adjacent and distant muscles. It was also confirmed that for any particular motor task, individual muscle segments can be functionally classified as prime mover, synergist or antagonist - classifications which are flexible from one movement to the next.  相似文献   

15.
Previous studies have suggested that older adults may be more resistant to muscular fatigue than young adults. We sought to determine whether motor unit firing rate might be a factor that determines the response to fatiguing exercise in young and older subjects. Motor unit recordings and muscular forces were obtained from the tibialis anterior (TA) muscle of 11 young and 8 older individuals. Maximal voluntary force was first measured during maximal-effort dorsiflexion contractions. Each subject then performed a series of 15 maximal isometric contractions, with each contraction lasting 30 s. A 10-s rest period separated the fatiguing contractions. As a result of the fatiguing exercise, both subject groups demonstrated a significant loss in maximal force. The force decline was less in the older adults (20.4%) than in the young adults (33.8%). As expected, prior to muscle fatigue, maximal firing rates in the TA muscle were greater in the young (28.1 ± 5.8 imp/s) than in the older adults (22.3 ± 4.8 imp/s). The decrease in motor unit firing rate with fatigue was also greater in the young adults (34.9%), than in the older adults (22.0%). These results suggest that the greater fatigue-resistance exhibited by older individuals might be explained by the fact that the decline in motor unit firing rate during fatigue is greater in young persons than it is in older adults.  相似文献   

16.
The influence of common oscillatory inputs to the motoneuron pool on correlated patterns of motor unit discharge was examined using model simulations. Motor unit synchronization, in-phase fluctuations in mean firing rates known as ‘common drive’, and the coefficient of variation of the muscle force were examined as the frequency and amplitude of common oscillatory inputs to the motoneuron pool were varied. The amount of synchronization, the peak correlation between mean firing rates and the coefficient of variation of the force varied with both the frequency and amplitude of the common input signal. Values for ‘common drive’ and the force coefficient of variation were highest for oscillatory inputs at frequencies less than 5 Hz, while synchronization reached a maximum when the frequency of the common input was close to the average motor unit firing rate. The frequency of the common input signal for which the highest levels of synchronization were observed increased as motoneuron firing rates increased in response to higher target force levels. The simulation results suggest that common low-frequency oscillations in motor unit firing rates and short-term synchronization result from oscillatory activity in different bands of the frequency spectrum of shared motoneuron inputs. The results also indicate that the amount of synchronization between motor unit discharges depends not only on the amplitude of the shared input signal, but also on its frequency in relation to the present firing rates of the individual motor units.  相似文献   

17.
The purpose of this study was to compare the influence of prolonged vibration of a hand muscle on the amplitude of the stretch reflex, motor unit discharge rate, and force fluctuations during steady, submaximal contractions. Thirty-two young adults performed 10 isometric contractions at a constant force (5.0 +/- 2.3% of maximal force) with the first dorsal interosseus muscle. Each contraction was held steady for 10 s, and then stretch reflexes were evoked. Subsequently, 20 subjects had vibration applied to the relaxed muscle for 30 min, and 12 subjects received no vibration. The muscle vibration induced a tonic vibration reflex. The intervention (vibration or no vibration) was followed by 2 sets of 10 constant-force contractions with applied stretches (After and Recovery trials). The mean electromyogram amplitude of the short-latency component of the stretch reflex increased by 33% during the After trials (P < 0.01) and by 38% during the Recovery trials (P < 0.01). The standard deviation of force during the steady contractions increased by 21% during the After trials (P < 0.05) and by 28% during the Recovery trials (P < 0.01). The discharge rate of motor units increased from 10.3 +/- 2.7 pulses/s (pps) before vibration to 12.2 +/- 3.1 pps (P < 0.01) during the After trials and to 11.9 +/- 2.6 pps during the Recovery trials (P < 0.01). There was no change in force fluctuations or stretch reflex magnitude for the subjects in the Control group. The results indicate that prolonged vibration increased the short-latency component of the stretch reflex, the discharge rate of motor units, and the fluctuations in force during contractions by a hand muscle. These adjustments were necessary to achieve the target force due to the vibration-induced decrease in the force capacity of the muscle.  相似文献   

18.
The greater fluctuations in motor output that are often exhibited by old adults can be reduced with strength training. The purpose of the study was to determine the effect of strength and steadiness training by old adults on fluctuations in force and position during voluntary contractions with the quadriceps femoris muscle. Healthy old adults (65-80 yr) completed 16 wk of heavy-load (80% of maximum, n = 11) strength training, heavy-load steadiness training (n = 6), or no training (n = 9). Steadiness training required subjects to match the angular displacement about the knee joint to a constant-velocity template. The Heavy-Load group experienced a 5.5% increase in muscle volume, a 25% increase in maximal voluntary contraction force, and a 26% increase in the one-repetition (1-RM) load. The Heavy-Load Steady group experienced increases of 11.5, 31, and 36%, respectively. The maximal electromyogram signal of quadriceps femoris increased by 51% in the two training groups. The coefficient of variation (CV) for force during submaximal isometric contractions did not change with training for any group. Although both training groups also experienced a reduction in CV for force during anisometric contractions with a 50% 1-RM load, the standard deviation of position did not change with time for any group. The Heavy-Load Steady group also experienced a reduction in CV for force during the training contractions performed with the 80% 1-RM load. Thus strength training reduced the force fluctuations of the quadriceps femoris muscles during anisometric contractions but not during isometric contractions.  相似文献   

19.
The purpose of this study was to test whether surface mechanomyogram (MMG) recorded on the skin reflects the contractile properties of individual motor units in humans. Eight motor units in the medial gastrocnemius muscle were identified, and trains of stimulation at 5, 10, 15, and 20 Hz were delivered to each isolated motor unit. There was a significant positive correlation between the duration of MMG and twitch duration. MMG amplitude decreased with increasing stimulation frequency. Reductions in MMG amplitude were in parallel with the reductions in force fluctuations, and the rate of change in both was positively correlated across the motor units. Rate of change in MMG amplitude against force was negatively correlated to half relaxation time and twitch duration. Similar negative correlations were found between force fluctuations and contractile properties. These results provide evidence supporting a direct relation between MMG and contractile properties of individual motor units within the gastrocnemius muscle, indicating that surface MMG is dependent on the contractile properties of the activated motor units in humans.  相似文献   

20.
This study compared motor unit rate coding and muscular force control in the first dorsal interosseous muscle of older (n = 11, mean 72.3 yr) and young (n = 12, mean 18.7 yr) adults. Rate coding during a sinusoidal isometric force-matching task was evaluated using spectral analysis of the time-varying changes in firing rate. The task required force modulations to match a trajectory comprising the sum of 0.15- and 0.45-Hz sine waves. Based on the amplitude of spectral peaks at 0.15 and 0.45 Hz, the amplitude of force modulation was similar in young and older adults at both frequencies (F = 1.9, P = 0.17). Force modulation gain (FMG) was computed as the ratio of the amplitude of force modulation to the amplitude of firing rate modulation. To account for rate coding differences related to the properties of the motoneuron, recruitment threshold force was used as a covariate in age-group comparisons. At both task frequencies, firing rate was modulated with less amplitude (F = 0 14, P < 0.001) and FMG was greater (F = 0 27, P < 0.001) in the older adults. In its transformation of neural input to mechanical output, muscle is known to act as a low-pass filter. Compared with modulation at 0.15 Hz, less change in force per change in firing rate at 0.45 Hz (lower FMG; F = 0 67, P < 0.001), independent of age group, is consistent with this filtering effect. Our conclusion is that there is a reduced amplitude of firing rate modulation in older adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号