首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to test the possible involvement of surface proteins on some metabolical aspects of chick glial cell differentiation in culture, perturbations were induced on the glial cell surface membrane by limited trypsinization before seeding. The developmental changes of enzymes involved in the energy metabolism of the cell: malate dehydrogenase (MDH), glutamate dehydrogenase (GDH), hexokinase (HK), lactate dehydrogenase (LDH), enolase as well as glutamine synthetase (GS) were determined in trypsin treated cells and controls. The total protein and DNA content per dish was higher in treated cells than in controls, however the protein ratio towards DNA remained unchanged. The levels of GS, GDH, LDH, and enolase activities were significantly enhanced after trypsin treatment of the cells compared to controls. The enhanced value of total LDH activity is essentially the result of the increase of M subunit containing isoenzymes. Considering that a higher level of GS activity characterizes some maturation of the glial cells (as observed during the maturation of the chick brain) it is apparent that modifications of cell surface located factors, by trypsin treatment, induce differentiation phenomena at the functional state of the glial cells in culture. This may indicate that interactions located at the cell surface are involved in the modulation of key enzymes of the energy metabolism pathway.  相似文献   

2.
Developmental changes in lactate dehydrogenase (LDH), enolase, hexokinase (HK), malate dehydrogenase (MDH), and glutamate dehydrogenase (GDH) activities were measured in cultures of pure neurons and glial cells prepared from brains of chick embryos (8 day-old for neurons, 14 day-old for glial cells) as a function of cellular development with time in culture. The modifications observed in culture were compared to those measured in brain extracts during the development of the nervous tissue in the chick embryo and during the post-hatching period. A significant increase of MDH, GDH, LDH, and enolase activities are observed in neurons between 3 and 6 days of culture, whereas simultaneously a decrease of HK values occurs. In the embryonic brain between 11 and 14 days of incubation, which would correspond for the neuronal cultures to day 3 through 6, modifications of MDH, GDH, HK, and enolase levels are similar to those observed in neurons in culture. Only the increase of LDH activity is less pronounced in vivo than in cultivated cells. The evolution of the tested enzymatic activities in the brain of the chick during the period between 7 days before and 10 days after hatching is quite similar to that observed in cultivated glial cells (prepared from 14 day-old embryos) between 6 and 18 days of culture. All tested activities increased in comparable proportions. The modifications of the enzymatic profile indicate that some maturation phenomena affecting energy metabolism of neuronal and glial elements in culture, are quite similar to those occuring in the total nervous tissue. A relationship between the development of the energy metabolism of the brain and differentiation processes affecting neuroblasts and the glial-forming cells is discussed.  相似文献   

3.
In order to study the astroglial contribution to hypoxic injury on brain tissue metabolism, modifications of glutamine synthetase (GS) lactate dehydrogenase (LDH) enolase and malate dehydrogenase activity produced by reduced oxygen supply have been determined in primary cultures of astrocytes prepared from newborn rat cerebral cortex. Enzymatic activities were measured immediately after the hypoxic treatment (9 h) and during post injury recovery. GS level is significantly decreased in response to low oxygen pressure and increased above control value during the post hypoxic recovery period. The magnitude of GS reduction by hypoxia depends on the age of the cells in culture. Lactate dehydrogenase and enolase levels were significantly enhanced during the two periods considered. No modification of the MDH level was observed. The synthesis of LDH isoenzymes containing mainly M subunits is specifically induced by hypoxia. Our results suggest that astroglial cells may represent a particularly sensitive target toward hypoxia injury in brain tissue. Low oxygen pressure available may modify some fundamental metabolical functions of these cells such as glutamate turnover and lactic acid accumulation.  相似文献   

4.
本文采用液体培养体系结合酶细胞化学方法,对体外培养不同发育阶段的小鼠肾髓巨核细胞乳酸脱氢酶、苹果酸脱氢酶、谷氨酸脱氢酶的活性变化进行了动态观察。在9天培养期间,巨核细胞的增殖数在5—7天达到高峰,并随时间有不同程度分化。对培养3、5、7、9天的巨核细胞进行酶细胞化学研究,结果表明,巨核细胞在发育成熟前,三种酶活性均有增高。提示巨核细胞在分化过程中,糖酵解及三羧酸循环代谢均有增强。  相似文献   

5.
The expression of glutamine synthetase (GS; L-glutamate ammonia ligase; EC 6.3.1.2) in primary cultures of chick astroglial cells and neurons grown in a chemically defined medium, with and without insulin added, was investigated. An inhibitory effect of insulin toward GS activity, and specific to chick astroglial cells, was observed. Neurons in culture were not sensitive to the hormone effect. Modulation of the activating effect of hydrocortisone on glial GS by insulin was also observed. The data suggest that insulin contributes to the regulation of the metabolism of amino acid neurotransmitters via its effect on GS.  相似文献   

6.
Regulation of mRNAs for Three Enzymes in the Glial Cell Model C6 Cell Line   总被引:4,自引:2,他引:2  
In the glial cell line C6, regulation of actinomycin D (Act-D)-sensitive translatable polysomal mRNAs of three key enzymes--glycerol phosphate dehydrogenase (GPDH; EC 1.1.1.8) and glutamine synthetase (GS) by glucocorticoids and lactate dehydrogenase (LDH; EC 1.1.1.27) by catecholamines--is described. Though the first two enzymes are hydrocortisone (HC)-inducible, the nature of their response to the hyperacetylating agent sodium butyrate is dramatically different. Furthermore the appearance of GPDH translatable poly(A)+ RNA in HC-induced cells is inhibited by the presence of cycloheximide (CHX), whereas the induction of GS is unaffected by CHX. These observations necessitate further probing into an existing model system to explain the varied mechanisms of induction of these two enzymes by a single inducer. In combination with the third enzyme whose induction by catecholamines is glial specific, we believe that the C6 cell represents the most appropriate cell line for molecular neurobiologists to study the mechanisms of hormone action in glia.  相似文献   

7.
The effect of alcohol on enzymes involved in energy metabolism of nervous tissue were analyzed, in vivo after acute and chronic ethanol administration to rats and in vitro by addition of 50 mM and 100 mM ethanol to the medium of cultured nerve cells: chick neurons, chick glial cells, a neuronal cell line (MT17) and a glial tumoral cell line (C6). The parameters we measured were (Na+,K+), Mg2+ and ecto Ca2+,Mg2+ ATPase activities involved in transport phenomena and enolase activities (non neuronal NNE and neuron specific enolase NSE) as markers of nerve cell maturation. In vivo, after chronic ethanol administration (Na+,K+) ATPase activity was increased while Mg2+ dependent activity was not affected. Enolase activity was decreased. Acute ethanol administration decreased (Na+,K+) ATPase activity, while Mg2+ dependent activity was not affected. In cultured nerve cells ethanol effect was dose, time and cell type dependent; alterations of the cell membrane by trypsinization of the tissue before seeding modifies the effect of ethanol on the enzymes we analyzed. Our results suggest that alcohol effect on nerve cells depends mainly on the lipoprotein structure of the cell membranes which may have different properties from one cell type to another.  相似文献   

8.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

9.
The mobility of plant lectin receptors in the plane of the membrane is examined for cells prepared from embryonic chick neural retinas by a variety of procedures. Cells liberated from the intact tissue by trypsin treatment followed by mechanical dissociation are able to redistribute their receptors into 'caps' both spontaneously and in the presence of a multivalent lectin. These cells, dispersed by trypsinization, upon repair in culture for a suitable period of time lose their ability to redistribute lectin receptors. Cells dispersed by mechanical means without prior trypsin treatment are unable to undergo 'cap' formation. In addition, cells within intact tissues are also unable to redistribute their lectin receptors into 'caps.' Based on these observations we propose that within solid tissues which have assumed their characteristic architecture, cell surfaces are immobilized, and that this phenomenon may be a critical parameter in determining the potential of a cell to undergo morphogenetic rearrangements.  相似文献   

10.
The method of enzyme-electrophoresis in agar gel according to Wieme (1959) was used for the study of lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) isoenzymes of 24-hour and 48-hour Salmonella cultures exposed to a 0.02% solution of potassium dichloroisocyanurate (PDIC). Severe repression of LDH and MDH isoenzymes was observed immediately after the exposure of the culture to the disinfectant solution. A significant decrease in the content of the isoenzyme LDH1 and of the cytoplasmic fraction (C1) of MDH simultaneously with the appearance of the fractions LDH4, LDH1a and LDH1b were established in the strains cultured on MPA in the course of 24 hours following the exposure. A tendency to a decrease in the LDH1 content was preserved in the experimental cultures after 48 hours, but the spectrum of MDH isoenzymes showed almost no differences in comparison with that of MDH isoenzymes in 48-hour cultures of the control strains.  相似文献   

11.
Earlier studies in our laboratory have shown that C-6 glial cells in culture exhibit astrocytic properties with increasing cell passage. In this study, we tested the responsiveness of early and late passage C-6 glial cells to various cultures conditions: culture substrata (collagen, poly-L-lysine, plastic), or supplements for the culture medium, DMEM, [fetal calf, or heat inactivated (HI) serum, or media conditioned from mouse neuroblastoma cells (NBCM) or primary chick embryo cultured neurons (NCM)]. Glutamine synthetase (GS) and cyclic nucleotide phosphohydrolase (CNP), astrocytic and oligodendrocytic glial markers, were used. Cell numer and protein content increased exponentially with days in culture regardless of the type of the substratum or cell passage. Differences in cell morphology among the three types of substratum were also reflected on GS activity, which rose by three-fold on culture day 3 for cells grown on collagen; thereafter, GS profiles were similar for all substrata. This early rise in GS is interpreted to reflect differential cell adhesion processes on the substrata; specifically, cell adhesion on the collagen stimulated differentiation into astrocytic phenotype.Analogous to immature glia cells in primary cultures, early passage C-6 glial cells responded to neuronal factors supplied either from NCM or NBCM by expressing reduced GS activity, the astrocytic marker and enhanced CNP activity, the oligodendrocytic marker. Thus, early passage cells can be induced to express either astrocytic or oligodendrocytic phenotype. In accordance with our previous reports on primary glial cells, late passage C-6 cells exhibit their usual astrocytic behavior, responding to serum factors with GS activity. Moreover, whereas NCM or NBCM alone markedly lowered GS activity, a combination with serum restored activity. The present findings confirm our previous observations and further establish the C-6 glial cells as a reliable model to study immature glia.Special issue dedicated to Dr. Paola S. Timiras.  相似文献   

12.
Glial cells were isolated from 1-week-old rat brain and cultured in a serum-free medium supplemented with the hormones insulin, hydrocortisone, and triiodothyronine. After 1 week in culture the cell population consisted mainly of galactocerebroside-positive cells (GC+; oligodendrocytes), the remainder of the cells being positive for glial fibrillary acidic protein (GFAP+; astrocytes). Oligodendrocytes were selectively removed from the cultures by complement-mediated cytolysis. The activities of glutamine synthetase and of various marker enzymes were measured in the nonlysed cells remaining after complement treatment of the cultures and in the culture medium containing proteins of the lysed cells. We found that the cellular activity of glutamine synthetase decreased in parallel with the lysis of GC+ cells and that the activity of glutamine synthetase in the supernatant increased. The activity of glycerol-3-phosphate dehydrogenase, a marker enzyme for oligodendrocytes, was no longer detectable in complement-treated cultures and the activity of glutamine synthetase was markedly lowered, whereas the activity of lactate dehydrogenase was as high as in untreated cultures. The location of glutamine synthetase both in oligodendrocytes and in astrocytes was confirmed by double-label immunocytochemistry with antisera against glutamine synthetase, GC, and GFAP. We conclude that in this culture system glutamine synthetase is expressed in both types of glial cells and that the activity of lactate dehydrogenase is at least one order of magnitude higher in astrocytes than in oligodendrocytes.  相似文献   

13.
Sakellaridis  N.  Mangoura  D.  Vernadakis  A. 《Neurochemical research》1984,9(10):1477-1491
The role of the microenvironment in the growth of glial cells in culture has been the topic of ongoing research in this laboratory. Recently, we reported a study on the contribution of fibroblast cell substratum and extracellular matrix in glial cell growth. In the present study we report data concerning a) the influence of a neuronal-enriched living substratum from chick embryo on the growth of glial cells derived from chick embryonic brain and plated onto the substratum; b) the influence of dissociated cells derived from chick embryonic brain on the growth of established glial cells in culture, and c) the influence of dissociated cells derived from adult rat spinal cord on the growth of established glial cells from newborn rat in culture. The activities of glutamine synthetase (GS) and 2, 3-cyclic nucleotide 3-phosphohydrolase (CNP) were the biochemical probes determined for astrocytes and oligodendrocytes, respectively. We found that glial growth as assessed by both enzyme activities, was enhanced when a nervous tissue derived cell population was plated onto a glial-enriched substratum, whereas glial growth was inhibited when the neuronal-enriched population was the cell substratum.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.  相似文献   

14.
Lactate dehydrogenase isozyme X (LDH X), malate dehydrogenase (MDH) and total soluble protein have been determined in lysates of spermatozoa isolated from caput, corpus and cauda of rat epididymis. Transit of spermatozoa through epididymis is accompanied by a reduction of LDH X, MDH and total protein per cell in sexually rested animals. The profiles of reduction along epididymal segments are different for the three variables studied. Mating with receptive females during the 5 days prior to determinations increases significantly the levels of MDH in spermatozoa from all sections of epididymis and produces increase of total soluble protein in the cells contained in cauda.  相似文献   

15.
Trypsinization of neonatal rat astrocyte primary cultures (normal cells) inhibited the activity of ethanolamine base exchange enzyme (EBEE) by 80%, whereas ethanolamine phosphotransferase (EPT) and choline base exchange (CBEE) enzymatic activities were not affected; subcellular fractionation demonstrated that trypsin treatment affected the intracellular EBEE activity. During trypsinization the enzyme was not taken up by cultured astrocytes but the cell surface was affected. In contrast, the same treatment did not alter EPT, CBEE and EBEE activities of spontaneously transformed cell lines derived from the primary cultures. However, treatment of the transformed cells with db-cAMP prior to trypsin, restored the pattern found in the primary culture, i.e. only EBEE activity was affected. These data suggest that a relationship exists between cell surface organization and intracellular EBEE activity in a culture system which possesses the property to control its own cell division or/and differentiation.  相似文献   

16.
Average lactate dehydrogenase (LDH) isoenzyme patterns the content of H subunits, total LDH activity, total malate dehydrogenase (MDH) activity and the m- MDH/s-MDH ratio were determined in twelve muscles and the male genital tract of the rabbit. LDH(1) was the predominant form in the heart, soleus and masseter muscles, LDH(3) in the lingual muscles and LDH(5) in the other muscles analysed. In the muscles, an increase in the percentual proportion of M subunits was accompanied, by a proportional increase in total LDH activity and a decrease in total MDH activity, especially m-MDH. LDH isoenzyme patterns and LDH and MDH activities are useful for obtaining some idea about the proportion of individual muscle fibres. Activity accounted for by H subunits was roughly the same in all the muscles analysed, indicating that the synthesis of H subunits is independent of the type of muscle fibre and of the oxygen supply of the muscular tissue, and also that isoenzymes composed chiefly of H subunits are not localized preferentially in the mitochondria. Similar relationships between LDH isoenzymes and LDH and MDH activities were found in the testicular and epididymal tissues. The tests and the head of the epididymis mainly contain LDH isoenzymes composed of H subunits. The total LDH activity in these tissues is relatively low and their MDH activity is relatively high compared with the body and tail of the epididymis. The proportion of H subunits in the ampulla, the seminal vesicles, the coagulating glands and the prostate is also high. Cowper's glands have a high LDH(5) and LDH(4) concentration. One of two LDHx isoenzymes were found in the testes and spermatozoa.  相似文献   

17.
Primary cultures of glial cells prepared from brains of newborn rats were grown for periods of 1–5 weeks. After a proliferative phase of between 2 and 3 weeks, the cultures were maintained in stationary phase, during which a significant increase of oxygen consumption and of the activities of lactate dehydrogenase, succinate dehydrogenase, and mitochondrial glycerolphosphate dehydrogenase could be observed. Furthermore, qualitative changes in the lactate dehydrogenase isoenzyme pattern were found with time, characterized by a shift toward an enhanced synthesis of H subunits. A similar development was found in comparing the LDH isoenzyme pattern in the brain of 15-day-old rat embryo with those of newborn and adult rat brains. It is suggested that some aspects of maturation of glial cells in culture are comparable to those occurring in whole brain in vivo, namely a shift towards an enhanced aerobic metabolism.  相似文献   

18.
Human bone-derived cells, grown in monolayer culture, were dissociated by incubations with trypsin/EDTA and subjected to thin-layer counter-current distribution in a 'low potential' aqueous two-phase system. Two major populations of cells were detected. The number of cells in the second (more hydrophobic) population increased with length of trypsinization and time in culture. Cells allowed to 'regain' surface molecules lost by trypsinization did not produce the second population. Cells occupying the second population after a short period of trypsinization had a lower rate of division than peak 1 cells but showed a higher rate of protein synthesis per rate of division than peak 1 cells. These results show that the cells have markedly different sensitivities to trypsin digestion which may be related to cell division rate of growth. The possible relationship between this and osteoblast development are discussed.  相似文献   

19.
Influence of chronic spinal cord stimulation upon some characteristic enzyme activities of energy metabolism was investigated in slow anterior (ALD) and fast posterior (PLD) latissimus dorsii muscles of the chick embryo. During embryonic life, oxidative metabolism (as evaluated by the activity of malate dehydrogenase (MDH] represents the main energetic pathway in both slow and fast muscles. At the end of embryonic life, an increase in anaerobic (as evaluated by the activity of lactate dehydrogenase (LDH] and creatine phosphokinase (CPK) activities occurs in PLD muscle. Chronic spinal cord stimulation at a low frequency was performed from the 10th day to the 16th day of embryonic development. In ALD, the enzyme activities were unaffected, while in PLD a concomitant decrease in LDH and CPK activities was observed.  相似文献   

20.
Summary Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号