首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A definitive pathoanatomic diagnosis was achieved in 14 biopsies of deep cerebral tumors in which the Laitinen CT adapter was utilized. In 5 patients, a third-ventricular colloid cyst was aspirated or resected by stereotactic endoscopy, with excellent results after a mean follow-up time of 2.5 years. Several instruments, including a diagnostic ultrasound probe, an ultrasonic aspirator, a combination laser and an endoscope can be used stereotactically when mounted on a special instrument carrier. Integration of the Laitinen stereotactic device and the CT adapter was developed to allow noninvasive stereotactic radiotherapy in a conventional fractionation schedule by a standard linear accelerator. Technical experiences using this radiosurgical system in over 30 sessions for treating inoperable cerebral arteriovenous malformations are promising, but the follow-up time is too short for evaluating the clinical effect.  相似文献   

5.
Li J  Pan HF  Cen H  Tian J  Ma Y  Tao JH  Ye DQ 《Molecular biology reports》2011,38(6):4077-4081
Interleukin-21(IL-21) is the most recently discovered member of the type-I cytokine family. Structurally, IL-21 shows homology to IL-2, 4, and 15 proteins. It has a variety of effects on the immune system, including B cell activation, plasma cell differentiation, and immunoglobulin production. Many previous studies have identified that IL-21 was associated with different autoimmune and inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. In addition, recent work has explored the role of IL-21 in systemic lupus erythematosus (SLE). Elevated expression of IL-21 was found in the sera of patients and mice with SLE. Moreover, association of IL-21 and IL-21R polymorphisms with susceptibility to SLE have been reported. All these findings suggest that IL-21 may have promise as a potential therapeutic target for SLE. In this review, we will discuss the biological features of IL-21, the IL-21 signaling and its potential role in SLE.  相似文献   

6.
Chronic pancreatitis (CP) is a progressive inflammatory disease typified by end‐stage fibrosis. This disease can also increase the risk of pancreatic cancer. The associated diagnosis, pain and other complications further add to the burden of disease management. In recent years, significant progress has been achieved in identifying miRNAs and their physiological functions, including mRNA repression and protein expression control. Given the extensive effort made on miRNA research, a close correlation has been discovered between certain types of miRNAs and disease progression, particularly for tissue fibrosis. Designing miRNA‐related tools for disease diagnosis and therapeutic treatments presents a novel and potential research frontier. In the current review, we discuss various miRNAs closely interacting with CP, as well as the possible development of targeted miRNA therapies in managing this disease.  相似文献   

7.
TIM-3 as a new therapeutic target in systemic lupus erythematosus   总被引:1,自引:0,他引:1  
T-cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) was the first surface molecule that specifically identifies Th1 cells in both mice and human. Recently, identification of Galectin-9 as a ligand for TIM-3 has established the TIM-3–Galectin-9 pathway as an important regulator of Th1 immunity and tolerance induction. Many previous studies have demonstrated that TIM-3 influences chronic autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis. In addition, association of TIM-3 polymorphisms with susceptibility to several autoimmune diseases has been identified. Recent work has explored the role of TIM-3 in systemic lupus erythematosus (SLE), and their results indicate that TIM-3 may represent a novel target for the treatment of SLE. In this review, we will discuss the TIM-3 pathway and the therapeutic potential of modulating the pathway in SLE.  相似文献   

8.
On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lectures of M. Racchi on History and future perspectives of Alzheimer Biomarkers and of G. Scapagnini on Cellular Stress Response and Brain Ageing are summarized. Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for clinica dementia. AD prevention is an important goal of ongoing research. Two objectives must be accomplished to make prevention feasible: i) individuals at high risk of AD need to be identified before the earliest symptoms become evident, by which time extensive neurodegeneration has already occurred and intervention to prevent the disease is likely to be less successful and ii) safe and effective interventions need to be developed that lead to a decrease in expression of this pathology. On the whole, data here reviewed strongly suggest that the measurement of conformationally altered p53 in blood cells has a high ability to discriminate AD cases from normal ageing, Parkinson's disease and other dementias. On the other hand, available data on the involvement of curcumin in restoring cellular homeostasis and rebalancing redox equilibrium, suggest that curcumin might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation, such as AD.  相似文献   

9.
In this paper we describe a method for validating therapeutic gene targets in arthritic disease. Ribozymes are catalytic oligonucleotides capable of highly sequence-specific cleavage of RNA. We designed ribozymes that cleave the mRNA encoding stromelysin, a matrix metalloproteinase implicated in cartilage catabolism. Ribozymes were initially screened in cultured fibroblasts to identify sites in the mRNA that were accessible for binding and cleavage. Accessible sites for ribozyme binding were found in various regions of the mRNA, including the 5' untranslated region, the coding region, and the 3' untranslated region. Several ribozymes that mediated sequence-specific and dose-dependent inhibition of stromelysin expression were characterized. Site selection in cell culture was predictive of in vivo bioactivity. An assay for measuring cartilage catabolism in rabbit articular cartilage explants was developed. Ribozymes inhibited IL-1-stimulated stromelysin mRNA expression in articular cartilage explants, yet failed to inhibit proteoglycan degradation. This indicated that up-regulation of stromelysin was not essential for IL-1-induced cartilage catabolism. Broad applications of this approach in therapeutic target validation are discussed.  相似文献   

10.
11.
Recently, the B cell has emerged as a cornerstone of systemic lupus erythematosus (SLE) pathogenesis. This has been highlighted by studies of the cytokine B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF), a crucial factor regulating B-cell maturation, survival and function. Overexpression of BAFF in mice leads to the development of an SLE-like disease, independent of T cells but instead relying on innate immunity mechanisms. Moreover, BAFF has been shown to be elevated in the serum of patients suffering from autoimmune conditions, especially SLE, and may correlate with disease activity. These findings challenge the previous notion that T:B-cell collaboration is the sole driver of SLE. In recent years, controlled trials have for the first time tested targeted therapeutics for SLE. However, agents designed to target B cells failed to meet primary endpoints in clinical trials in SLE, suggesting that a more complex role for B cells in SLE awaited elucidation. By contrast, on 9 March 2011, the US Food and Drug Administration approved belimumab, a fully human anti-BAFF monoclonal antibody, as a new B-cell-specific treatment for SLE. This article will review over 10 years of research on the BAFF system, key findings that led to this recent positive clinical outcome and propose a model potentially explaining why this B-cell-specific therapy has yielded positive results in clinical trials. We will also review promising therapies presently in clinical trials targeting innate immunity, which are likely to revolutionize SLE management towards a personalized and targeted therapy approach.  相似文献   

12.
Nowadays, the development of new technological solutions in the medical field, in particular biosensors, is a priority and a ground for great scientific and financial investment. From glucose sensors to highly sensible and more precise molecular tools, this biotechnological field has gone through an exponential growth, but still the applications are very limited to the future potential foreseen in the medical area. In the last decade, the advances in the genomic field have permitted the identification of specific biomarkers related to certain diseases, becoming one of the main approaches used in clinical diagnosis. Biomarkers have different clinical values, in the sense that they may provide preventive, predictive, prognostic and therapeutic response related information, not being exclusively used for diagnostic purposes, but also be applied in health management and disease treatment. Therefore, biomarkers allied with biosensors have the potential to revolutionize the way healthcare is managed. The vast choice of bioreceptors such as nucleic acids, antibodies, antigens, enzymes and even whole cells, consents the diagnosis of diseases ranging from viral and bacterial infections to cancer and metabolism disorders. The major appeal of these sensing platforms is that it provides a fast, cost-effective, reliable, highly sensitive and easy way to obtain an earlier clinical diagnosis, which can significantly affect the survival rate or patient's prognosis. This review will explore some of the most recent devices available and its clinical applications.  相似文献   

13.
Aptamers as therapeutic and diagnostic agents   总被引:29,自引:0,他引:29  
Aptamers are oligonucleotides derived from an in vitro evolution process called SELEX. Aptamers have been evolved to bind proteins which are associated with a number of disease states. Using this method, many powerful antagonists of such proteins have been found. In order for these antagonists to work in animal models of disease and in humans, it is necessary to modify the aptamers. First of all, sugar modifications of nucleoside triphosphates are necessary to render the resulting aptamers resistant to nucleases found in serum. Changing the 2'OH groups of ribose to 2'F or 2'NH2 groups yields aptamers which are long lived in blood. The relatively low molecular weight of aptamers (8000-12000) leads to rapid clearance from the blood. Aptamers can be kept in the circulation from hours to days by conjugating them to higher molecular weight vehicles. When modified, conjugated aptamers are injected into animals, they inhibit physiological functions known to be associated with their target proteins. A new approach to diagnostics is also described. Aptamer arrays on solid surfaces will become available rapidly because the SELEX protocol has been successfully automated. The use of photo-cross-linkable aptamers will allow the covalent attachment of aptamers to their cognate proteins, with very low backgrounds from other proteins in body fluids. Finally, protein staining with any reagent which distinguishes functional groups of amino acids from those of nucleic acids (and the solid support) will give a direct readout of proteins on the solid support.  相似文献   

14.
Live antigen carriers as tools for improved anti-tuberculosis vaccines   总被引:4,自引:0,他引:4  
Recombinant (r) Mycobacterium bovis BCG strains have been constructed which secrete biologically active listeriolysin (Hly) fusion protein of Listeria monocytogenes. In human and murine macrophage-like cell lines, intracellular persistence of these r-BCG strains was reduced as compared to the parental BCG strain. By immunogold labelling Hly was detected in membrane structures and within the phagosomal space of macrophages. Hly fusions consistently co-localized with a lysosome-associated membrane glycoprotein (LAMP-1) suggesting that membrane attack conformation of Hly was not altered. Although r-BCG microorganisms apparently did not egress into the cytoplasmic compartment of host cells, they both improved major histocompatibility complex class I presentation of co-phagocytosed soluble ovalbumin as compared with wild-type BCG microbes. These data suggest that Hly secretion endows BCG with an improved capacity to stimulate CD8 T cells. Because CD8 T cells play a major role in protection against tuberculosis such Hly-secreting r-BCG constructs are anti-tuberculosis vaccine candidates. In addition, we report on our r-Salmonella typhimurium expression system combined with the HlyB/HlyD/ TolC export machinery for delivering the prominent mycobacterial antigen Ag85B for immune recognition.  相似文献   

15.
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a recently identified proinflammatory cytokine of the TNF superfamily. Through activation of the fibroblast growth factor-inducible 14 (Fn14) receptor, TWEAK regulates cell proliferation, cell death and inflammation. The available evidences have indicated that TWEAK might be a target for therapeutic intervention in renal, vascular injury and neuropathy. Since renal, vascular and neuropsychiatric complications are frequently encountered in systemic lupus erythematosus (SLE)—a systemic autoimmune disease, TWEAK-Fn14 pathway may be implicated in the pathogenesis of SLE. In this review, we will discuss the TWEAK-Fn14 pathway and the therapeutic potential of modulating this pathway in SLE.  相似文献   

16.
VIP- and PACAP-mediated immunomodulation as prospective therapeutic tools   总被引:6,自引:0,他引:6  
The immune system and the brain continuously signal to each other, often along the same pathways, which might explain the connection between immunity, the brain and disease. Neuropeptides and their receptors represent part of this communication network, and recent work has examined their relevance to health, proving a potentially crucial clinical significance. The structurally related neuropeptides, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), are emerging as a means of fine tuning in the maintenance a balanced steady state in the immune system. Murine knockout and transgenic models for a VIP receptor suggest that VIP is an endogenous anti-inflammatory mediator with characteristics resembling those of a T-helper-2 cytokine. Thus, through molecular mechanisms that are being discovered, VIP might extend the range of therapeutic treatments available for various disorders, including acute and chronic inflammatory diseases, septic shock and autoimmune diseases.  相似文献   

17.
Chronic inflammation is a contributing factor to overall cancer risk as well as cancer promotion and progression; however, pathways regulating onset of cancer-promoting inflammatory responses are still poorly understood. Clinical data suggest that deficient anti-tumor cell-mediated immunity, in combination with enhanced pro-tumor humoral and/or innate immunity (inflammation), are significant factors influencing malignant outcome. Here, we discuss therapeutic implications from clinical data and experimental studies using de novo immune-competent mouse models of cancer development that together are revealing molecular and cellular mechanisms underlying interactions between immune cells and evolving neoplastic cells that regulate cancer outcome. Understanding the functionally significant links between adaptive and innate immunity that regulate cancer development will open new therapeutic opportunities to manipulate aspects of immunobiology and minimize lethal effects of cancer development.  相似文献   

18.
《Fly》2013,7(2):117-120
Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)—the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.  相似文献   

19.
Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)-the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号