首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The circumstances of human brain evolution are of central importance to accounting for human origins, yet are still poorly understood. Human evolution is usually portrayed as having occurred in a hot, dry climate in East Africa where the earliest human ancestors became bipedal and evolved tool-making skills and language while struggling to survive in a wooded or savannah environment. At least three points need to be recognised when constructing concepts of human brain evolution : (1) The human brain cannot develop normally without a reliable supply of several nutrients, notably docosahexaenoic acid, iodine and iron. (2) At term, the human fetus has about 13 % of body weight as fat, a key form of energy insurance supporting brain development that is not found in other primates. (3) The genome of humans and chimpanzees is <1 % different, so if they both evolved in essentially the same habitat, how did the human brain become so much larger, and how was its present-day nutritional vulnerability circumvented during 5-6 million years of hominid evolution ? The abundant presence of fish bones and shellfish remains in many African hominid fossil sites dating to 2 million years ago implies human ancestors commonly inhabited the shores, but this point is usually overlooked in conceptualizing how the human brain evolved. Shellfish, fish and shore-based animals and plants are the richest dietary sources of the key nutrients needed by the brain. Whether on the shores of lakes, marshes, rivers or the sea, the consumption of most shore-based foods requires no specialized skills or tools. The presence of key brain nutrients and a rich energy supply in shore-based foods would have provided the essential metabolic and nutritional support needed to gradually expand the hominid brain. Abundant availability of these foods also provided the time needed to develop and refine proto-human attributes that subsequently formed the basis of language, culture, tool making and hunting. The presence of body fat in human babies appears to be the product of a long period of sedentary, shore-based existence by the line of hominids destined to become humans, and became the unique solution to insuring a back-up fuel supply for the expanding hominid brain. Hence, survival of the fattest (babies) was the key to human brain evolution.  相似文献   

2.
Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain   总被引:4,自引:0,他引:4  
Several sources of information suggest that human beings evolved on a diet that had a ratio of omega-6 to omega-3 fatty acids (FA) of about 1/1; whereas today, Western diets have a ratio of 10/1 to 20–25/1, indicating that Western diets are deficient in omega-3 FA compared with the diet on which humans evolved and their genetic patterns were established. Omega-6 and omega-3 FA are not interconvertible in the human body and are important components of practically all cell membranes. Studies with nonhuman primates and human newborns indicate that docosahexaenoic acid (DHA) is essential for the normal functional development of the brain and retina, particularly in premature infants. DHA accounts for 40% of the membrane phospholipid FA in the brain. Both eicosapentaenoic acid (EPA) and DHA have an effect on membrane receptor function and even neurotransmitter generation and metabolism. There is growing evidence that EPA and DHA could play a role in hostility and violence in addition to the beneficial effects in substance abuse disorders and alcoholism. The balance of omega-6 and omega-3 FA is important for homeostasis and normal development throughout the life cycle.  相似文献   

3.
Changes in the fatty-acid composition of human adipose tissue before birth and during infancy and childhood were studied in Tanzania and compared with data for British and Dutch infants in relation to their diet. From the 32nd to the 37th week of gestation in Tanzania the proportion in the body fat of the unsaturated fatty acid linoleic acid tended to rise, suggesting an adequate supply of this essential fatty acid from the mother to the fetus. At term 2.5% of the total fatty acids of the body fat was linoleic acid, which corresponded with values in Dutch newborn infants but was significantly higher than those in British infants. During infancy in Tanzania the composition of the fat showed a dramatic increase in the proportions of the saturated fatty acids lauric acid and myristic acid, which did not occur in Dutch and British infants. The proportion of linoleic acid increased to 8%. These changes were a reflection of the fatty-acid composition of the fat in the human milk that the infants received. During weaning (1-2 years of age) the fatty-acid composition changed only slightly. The specific fatty-acid composition of the fat in Tanzanian breast milk may have a beneficial influence on the extent of intestinal absorption in the newborn child.  相似文献   

4.
Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids. The three-dimensional structure of recombinant human B-FABP in complex with oleic acid shows that the oleic acid hydrocarbon tail assumes a "U-shaped" conformation, whereas in the complex with docosahexaenoic acid the hydrocarbon tail adopts a helical conformation. A comparison of the three-dimensional structures and binding properties of human B-FABP with other homologous FABPs, indicates that the binding specificity is in part the result of nonconserved amino acid Phe(104), which interacts with double bonds present in the lipid hydrocarbon tail. In this context, analysis of the primary and tertiary structures of human B-FABP provides a rationale for its high affinity and specificity for polyunsaturated fatty acids. The expression of B-FABP in glial cells and its high affinity for docosahexaenoic acid, which is known to be an important component of neuronal membranes, points toward a role for B-FABP in supplying brain abundant fatty acids to the developing neuron.  相似文献   

5.
Most biomedical neuroscientists realize the importance of the study of brain evolution to help them understand the differences and similarities between their animal model of choice and the human brains in which they are ultimately interested. Many think of evolution as a linear process, going from simpler brains, as those of rats, to more complex ones, as those of humans. However, in reality, every extant species' brain has undergone as long a period of evolution as has the human brain, and each brain has its own species-specific adaptations. By understanding the variety of existing brain types, we can more accurately reconstruct the brains of common ancestors, and understand which brain traits (of humans as well as other species) are derived and which are ancestral. This understanding also allows us to identify convergently evolved traits, which are crucial in formulating hypotheses about structure-function relationships in the brain. A thorough understanding of the processes and patterns of brain evolution is essential to generalizing findings from 'model species' to humans, which is the backbone of modern biomedical science.  相似文献   

6.
Free fatty acids (FFA) have been determined in the rat brain by gas-liquid chromatography after isolation by thin-layer chromatography on silica gel. The brains were removed under three experimental conditions, 1) after freezing in situ with liquid nitrogen, 2) after immersion of the animal in liquid nitrogen, 3) after decapitation, the brain being frozen 3 minutes later. The total FFA level was found to be equal respectively to 20.1, 33.1 and 168 micrograms/g. In any case, the main fatty acids were palmitic, stearic and oleic acid but there were marked increases in arachidonic and docosahexaenoic acids following decapitation. A cause of error in the FFA determination originated in the use of commercial silica gel which contained significant amounts of fatty acids.  相似文献   

7.
Circulating triacylglycerol (TG) arises mainly from dietary fat. However, little is known about the entry of dietary fat into the major TG pool, very low-density lipoprotein (VLDL) TG. We used a novel method to study the specific incorporation of dietary fatty acids into postprandial VLDL TG in humans. Eight healthy volunteers (age 25.4 +/- 2.2 years, body mass index 22.1 +/- 2.3 kg/m2) were fed a mixed meal containing 30 g fish oil and 600 mg [1-13C]palmitic acid. Chylomicrons and VLDL were separated using immunoaffinity against apolipoprotein B-100. The fatty acid composition of lipoproteins was analyzed by gas chromatography/mass spectrometry. [1-13C]palmitic acid started to appear in VLDL TG 3 h after meal intake, and a similar delay was observed for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Approximately 20% of dietary fatty acids entered the VLDL TG pool 6 h after meal intake. DHA was clearly overincorporated into this pool compared with [1-13C]palmitic acid and EPA. This seemed to depend on a marked elevation of this fatty acid in the nonesterified fatty acid pool. In summary, the contribution of dietary fatty acids to early postprandial VLDL TG is substantial. The role of DHA in VLDL TG production will require further investigation.  相似文献   

8.
Various strategies have been developed to increase the cellular level of (n-3) polyunsaturated fatty acids in animals and humans. In the present study, we investigated the effect of dietary myristic acid, which represents 9% to 12% of fatty acids in milk fat, on the storage of α-linolenic acid and its conversion to highly unsaturated (n-3) fatty acid derivatives. Five isocaloric diets were designed, containing equal amounts of α-linolenic acid (1.3% of dietary fatty acids, i.e. 0.3% of dietary energy) and linoleic acid (7.0% of fatty acids, i.e. 1.5% of energy). Myristic acid was supplied from traces to high levels (0%, 5%, 10%, 20% and 30% of fatty acids, i.e. 0% to 6.6% of energy). To keep the intake of total fat and other saturated fatty acids constant, substitution was made with decreasing levels of oleic acid (76.1% to 35.5% of fatty acids, i.e. 16.7% to 7.8% of energy) that is considered to be neutral in lipid metabolism. After 8 weeks, results on physiological parameters showed that total cholesterol and low-density lipoprotein-cholesterol did not differ in the diets containing 0%, 5% and 10% myristic acid, but were significantly higher in the diet containing 30% myristic acid. In all the tissues, a significant increasing effect of the substitution of oleic acid for myristic acid was shown on the level of both α-linolenic and linoleic acids. Compared with the rats fed the diet containing no myristic acid, docosahexaenoic acid significantly increased in the brain and red blood cells of the rats fed the diet with 30% myristic acid and in the plasma of the rats fed the diet with 20% myristic acid. Arachidonic acid also increased in the brain of the rats fed the diet with 30% myristic acid. By measuring Δ6-desaturase activity, we found a significant increase in the liver of the rats fed the diet containing 10% of myristic acid but no effect at higher levels of myristic acid. These results suggest that an increase in dietary myristic acid may contribute in increasing significantly the tissue storage of α-linolenic acid and the overall bioavailability of (n-3) polyunsaturated fatty acids in the brain, red blood cells and plasma, and that mechanisms other than the single Δ6-desaturase activity are involved in this effect.  相似文献   

9.
The maintenance of optimal cognitive function is a central feature of healthy aging. Impairment in brain glucose uptake is common in aging associated cognitive deterioration, but little is known of how this problem arises or whether it can be corrected or bypassed. Several aspects of the challenge to providing the brain with an adequate supply of fuel during aging seem to relate to omega-3 fatty acids. For instance, low intake of omega-3 fatty acids, especially docosahexaenoic acid (DHA), is becoming increasingly associated with several forms of cognitive decline in the elderly, particularly Alzheimer's disease. Brain DHA level seems to be an important regulator of brain glucose uptake, possibly by affecting the activity of some but not all the glucose transporters. DHA synthesis from either alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA) is very low in humans begging the question of whether these DHA precursors are likely to be helpful in maintaining cognition during aging. We speculate that ALA and EPA may well have useful supporting roles in maintaining brain function during aging but not by their conversion to DHA. ALA is an efficient ketogenic fatty acid, while EPA promotes fatty acid oxidation. By helping to produce ketone bodies, the effects of ALA and EPA could well be useful in strategies intended to use ketones to bypass problems of impaired glucose access to the brain during aging. Hence, it may be time to consider whether the main omega-3 fatty acids have distinct but complementary roles in brain function.  相似文献   

10.
The objective of this investigation was to examine the relationship between body size, fatty acid composition and sensitivity to lipid peroxidation of mitochondria and microsomes isolated from the brain of different size bird species: manon, quail, pigeon, duck and goose, representing a 372-fold range of body mass. Fatty acids of total lipids were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The allometric study of the fatty acids present in brain mitochondria and microsomes of the different bird species showed a small number of significant allometric trends. In mitochondria the percentage of monounsaturated fatty acids, was significantly lower in the larger birds (r=-0.965; P<0.008). The significant allometric increase in 18:2 n-6; linoleic acid (r=0.986; P<0.0143), polyunsaturated (r=0.993; P<0.007) and total unsaturated (r=0.966; P<0.034) in brain microsomes but not in mitochondria may indicate a preferential incorporation of this fatty acid in the brain endoplasmic reticulum of the larger bird species. The brain of all birds studied had a high content of docosahexaenoic acid. However brain mitochondria but not microsomes isolated from all the birds analyzed showed a significant decrease of arachidonic and docosahexaenoic acids during lipid peroxidation. The allometric analyses of chemiluminescence were not statistically significant. In conclusion our results show absence of correlation between the sensitivity to lipid peroxidation of brain mitochondria and microsomes with body size and maximum life span.  相似文献   

11.
Body fat distribution is an important predictor of metabolic abnormalities in obese humans. Dysregulation of free fatty acid (FFA) release, especially from upper body subcutaneous adipose tissue, appears to contribute substantially to these metabolic disturbances. Why different individuals preferentially store fat in upper vs. lower body subcutaneous fat or subcutaneous vs. visceral fat is not completely understood. Current evidence suggests that defects in regional lipolysis are not the cause of net fat retention in larger fat depots. Regional variations in the storage of fatty acids, both meal derived and direct reuptake, and storage of circulating FFAs that may help to explain why some depots expand at the expense of others have been reported. We review the quantitative data on regional lipolysis, meal, and FFA storage in adults to provide an overview of fat balance differences in adults with different fat distribution patterns.  相似文献   

12.
Formula supplemented with docosahexaenoic acid (DHA) improves retinal function of preterm infants but the optimal dose is unknown. In a randomized controlled trial we examined the effect of increasing the DHA concentration of human milk and formula on circulating fatty acids of preterm infants. Infants born <33 weeks gestation were fed high-DHA milk (1% total fat as DHA) or standard-DHA milk (0.2-0.3% DHA) until reaching their estimated due date (EDD). Milk arachidonic acid (AA) concentration was approximately 0.5% for both groups. At EDD, erythrocyte membrane phospholipid DHA was elevated in the high-DHA group compared with standard-DHA (mean+/-SD, high-DHA 6.8+/-1.2, standard-DHA 5.2+/-0.7, p<0.0005) but AA was lower (high-DHA 14.9+/-1.3, standard-DHA 16.0+/-1.2, p<0.0005). Feeding preterm infants human milk and formula with 1% DHA raises but does not saturate erythrocyte phospholipids with DHA. Milk exceeding 1% DHA may be required to increase DHA status to levels seen in term infants.  相似文献   

13.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

14.
Docosahexanoic acid (DHA) and arachidonic acid (ARA) are long chain essential fatty acids used as supplements in commercial infant formula. DHA/ARA deficient states are associated with adverse neurological outcomes in animals and humans. Preterm infants are at risk for DHA/ARA deficiency. A few clinical reports on the effects of fatty acid supplementation have shown benefit in preterm, low birth weight, and normal infants in the first year of life, whereas others did not. Studies in animals have reported shortened gestation, fetal growth retardation, reduced infant body mass, and increased fetal mortality with consumption of fatty acids during pregnancy. To understand the data that support fatty acid supplementation in infant formula, a review of the animal model literature was undertaken, to examine the effects of DHA/ARA on neurodevelopment, including the effects on visual acuity. Several points emerged from this review. (1) Animal studies indicate that requirements for DHA/ARA vary depending on developmental age. Alterations of the ratio of DHA/ARA can impact developmental outcome. (2) The available studies suggest that while supplementation of DHA/ARA in an appropriate ratio can increase tissue levels of these fatty acids in the brain and retina, tissues sensitive to depletion of fatty acids, the benefit of routine supplementation remains unclear. Few studies measure functional outcome relative to changes in physiologic pools of DHA/ARA after supplementation. (3) Animal literature does not support a clear long-term benefit of replenishing DHA/ARA tissue levels and administration of these fatty acids at concentrations above those in human milk suggests adverse effects on growth, survival, and neurodevelopment.  相似文献   

15.
The question of whether a dietary supply of docosahexaenoic acid (DHA) and arachidonic acid (ARA) imparts advantages to visual or cognitive development in term infants has been debated for many years. DHA and ARA are present in human milk, and nursing infants consume these fatty acids needed for rapid synthesis of cell membranes, particularly neural cells. The reported mean DHA and ARA levels of human milk worldwide are 0.32% and 0.47% of total fatty acids, respectively. Prior to 2002 in the US, formula-fed infants did not receive these fatty acids and relied solely on endogenous conversion of the dietary essential omega-3 (n-3) and omega-6 (n-6) fatty acids, α-linolenic and linoleic acids, to DHA and ARA, respectively. Formula-fed infants were found to have significantly less accretion of DHA in brain cortex after death than breastfed infants. Numerous studies have found positive correlations between blood DHA levels and improvements in cognitive or visual function outcomes of breastfed and formula-fed infants. Results of randomized controlled clinical trials of term formula-fed infants evaluating functional benefits of dietary DHA and ARA have been mixed, likely due to study design heterogeneity. A comparison of visual and cognitive outcomes in these trials suggests that dietary DHA level is particularly relevant. Trials with formulas providing close to the worldwide human milk mean of 0.32% DHA were more likely to yield functional benefits attributable to DHA. We agree with several expert groups in recommending that infants receive at least 0.3% DHA, with at least 0.3% ARA, in infant feedings; in addition, some clinical evidence suggests that an ARA:DHA ratio greater than 1:1 is associated with improved cognitive outcomes.  相似文献   

16.
The development of the rat's brain demonstrates the increase of the short, medium and long C-chain saturated fatty acids and of the docosahexaenoic acids and the decrease of the mono-unsaturated fatty acids, of the linoleic-arachidonic acids, of the alpha-linolenic-eicosapentaenoic acids. The stabilization of the brain in the adult rat increases all the saturated and mono-unsaturated fatty acids and triene, while it decreases all the poly-unsaturated (omega-6; omega-3) fatty acids. The CCl4 poisoning cuts down the linoleic-arachidonic acids and the alpha-linolenic acid throughout the development of the rat's brain; after the growth, CCl4 increases triene, ac. eicosapentaenoic and reduces the linoleic-arachidonic and alpha-linolenic-ac. docosahexaenoic acids.  相似文献   

17.
Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition.  相似文献   

18.
Long chain polyunsaturated fatty acids (LC-PUFAs) are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA) from plant-based medium chain (MC) PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS) gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60–80 kya.  相似文献   

19.
The polyunsaturated fatty acid (PUFA) composition of the mammalian central nervous system is almost wholly composed of two long-chain polyunsaturated fatty acids (LC-PUFA), docosahexaenoic acid (DHA) and arachidonic acid (AA). PUFA are dietarily essential, thus normal infant/neonatal brain, intellectual growth and development cannot be accomplished if they are deficient during pregnancy and lactation. Uniquely in the human species, the fetal brain consumes 70% of the energy delivered to it by mother. DHA and AA are needed to construct placental and fetal tissues for cell membrane growth, structure and function. Contemporary evidence shows that the maternal circulation is depleted of AA and DHA during fetal growth. Sustaining normal adult human brain function also requires LC-PUFA.Homo sapiens is unlikely to have evolved a large, complex, metabolically expensive brain in an environment which did not provide abundant dietary LC-PUFA. Conversion of 18-carbon PUFA from vegetation to AA and DHA is considered quantitatively insufficient due to a combination of high rates of PUFA oxidation for energy, inefficient and rate limited enzymatic conversion and substrate recycling. The littoral marine and lacustrine food chains provide consistently greater amounts of pre-formed LC-PUFA than the terrestrial food chain. Dietary levels of DHA are 2.5–100 fold higher for equivalent weights of marine fish or shellfish vs. lean or fat terrestrial meats. Mammalian brain tissue and bird egg yolks, especially from marine birds, are the richest terrestrial sources of LC-PUFA. However, land animal adipose fats have been linked to vascular disease and mental ill-health, whereas marine lipids have been demonstrated to be protective. At South African Capesites, large shell middens and fish remains are associated with evidence for some of the earliest modern humans. Cape sites dating from 100 to 18 kya cluster within 200 km of the present coast. Evidence of early H. sapiens is also found around the Rift Valley lakes and up the Nile Corridor into the Middle East; in some cases there is an association with the use of littoral resources. Exploitation of river, estuarine, stranded and spawning fish, shellfish and sea bird nestlings and eggs by Homo could have provided essential dietary LC-PUFA for men, women, and children without requiring organized hunting/fishing, or sophisticated social behavior. It is however, predictable from the present evidence that exploitation of this food resource would have provided the advantage in multi-generational brain development which would have made possible the advent of H. sapiens. Restriction to land based foods as postulated by the savannah and other hypotheses would have led to degeneration of the brain and vascular system as happened without exception in all other land based apes and mammals as they evolved larger bodies.  相似文献   

20.
Lipid peroxidation has been implicated in the pathophysiological sequelae of human neurodegenerative disorders. It is recognized that quantification of lipid peroxidation is best assessed in vivo by measuring a series of prostaglandin (PG) F2-like compounds termed F2-isoprostanes (IsoPs) in tissues in which arachidonic acid is abundant. Unlike other organs, the major polyunsaturated fatty acid (PUFA) in the brain is docosahexaenoic acid (DHA, C22:6 omega-6), and this fatty acid is particularly enriched in neurons. We have previously reported that DHA undergoes oxidation in vitro and in vivo resulting in the formation of a series of F2-IsoP-like compounds termed F4-neuroprostanes (F4-NPs). We recently chemically synthesized one F4-NP, 17-F4c-NP, converted it to an 18O-labeled derivative, and utilized it as an internal standard to develop an assay to quantify endogenous production of F4-NPs by gas chromatography (GC)/negative ion chemical ionization (NICI) mass spectrometry (MS). The assay is highly precise and accurate. The lower limit of sensitivity is approximately 10 pg. Levels of F4-NPs in brain tissue from rodents were 8.7 +/- 2.0 ng/g wet weight (mean +/- S.D.). Levels of the F4-NPs in brains from normal humans were found to be 4.9 +/- 0.6 ng/g (mean +/- S.D.) and were 2.1-fold higher in affected regions of brains from humans with Alzheimer's disease (P = 0.02). Thus, this assay provides a sensitive and accurate method to assess oxidation of DHA in animal and human tissues and will allow for the further elucidation of the role of oxidative injury to the central nervous system in association with human neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号