首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female reproductive tracts of the viviparous neo-tropical onychophoran Peripatus acacioi have been examined at different times throughout the year, and the altering relationship between the developing embryo and the uterus is described. Depending on her age and time of year, the female may have one or two generations of embryos within her uterus. The uterine wall consists of a thin outer epithelium and basal lamina, three layers of muscles, and a thick basal lamina beneath an inner epithelium lining the uterus lumen. These layers are consistent along the length of the uterus apart from the inner epithelial lining, which varies according to position in the uterus and the developmental stage of embryos contained in the uterus. Early embryos are positioned along the length of the uterus and therefore have space in which to grow. During cleavage and segment formation, each embryo is contained within a fluid-filled embryo cavity that increases in size as the embryo grows. Morulae and blastulae are separated by lengths of empty uterus in which the epithelial lining appears vacuolated. Until the process of segment formation is complete, the embryos are attached to a placenta by a stalk and remain in the same part of the upper region of the uterus. As these embryos grow, the lengths of vacuolated cell-lined uterus between them decrease. Each embryo cavity is surrounded by the epithelial sac, the maternal uterine epithelium, which becomes overlaid by a thin layer of cells, the embryo sac, which is believed to be of embryonic origin. The placenta is a syncytial modification of the epithelial sac located at the ovarian end of each embryo cavity covered by the embryo sac and is analogous to the mammalian noninvasive epitheliochorial placenta. Segment-forming embryos have their heads directed toward the ovary. As the embryo gets longer during segment formation, its posture changes from coiled to flexed. Once segment formation is complete, the embryo loses contact with its stalk, an embryonic cuticle forms, and the embryo turns around so that its head is directed toward the vagina. The embryo escapes from its embryo sac and moves to the lower part of the uterus. In the lower part of the uterus, the straightened fetuses are first unpigmented but subsequently become pigmented as the secondary papillae on the body surface form and an adult-type cuticle forms beneath the embryonic cuticle. While the embryos are contained within their embryo cavities, nutrients are supplied by the placenta. Throughout development the mouth is open and in the mature fetus the gut is lined by peritrophic membrane and material is present in the gut lumen. Trachea have been observed only in fetuses that were ready for birth. Insemination, cyclical changes in the uterine epithelium, and the nature of the cuticle shed at parturition are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

2.
A stromal cell clone, ST2, which can support both myelopoiesis and B lymphopoiesis of adult bone marrow was used as an in vitro microenvironment for investigating the ontogeny of the B cell progenitor in murine embryos. The B cell progenitor clonable on an ST2 layer first become detectable in the embryonal body rather than in the yolk sac around day 9.5 of gestation. As soon as it develops in the embryo, it enters the blood circulation and becomes detectable both in the developing fetal liver and the yolk sac of the 10 day embryo. On the other hand, mast cell and polymorphonuclear cell progenitors, which are also generated on the ST2 layer, develop first in the yolk sac and migrate to the fetal liver around day 10-11 of gestation. At the late stage of embryonal development, day 15-16 of gestation, the B cell progenitor enters the femur as vascularization of the femur starts. These results suggest that the localization of the committed stem cells for various hemopoietic cell lineages differs in the early embryo, although the localization of the pluripotent stem cells is yet to be determined.  相似文献   

3.
4.
The fate of the embryonic endoderm (generally called visceral embryonic endoderm) of prestreak and early primitive streak stages of the mouse embryo was studied in vitro by microinjecting horseradish peroxidase into single axial endoderm cells of 6.7-day-old embryos and tracing the labelled descendants either through gastrulation (1 day of culture) or to early somite stages (2 days of culture). Descendants of endoderm cells from the anterior half of the axis were found at the extreme cranial end of the embryo after 1 day and in the visceral yolk sac endoderm after 2 days, i.e. they were displaced anteriorly and anterolaterally. Descendants of cells originating over and near the anterior end of the early primitive streak, i.e. posterior to the distal tip of the egg cylinder, were found after 1 day over the entire embryonic axis and after 2 days in the embryonic endoderm at the anterior intestinal portal, in the foregut, along the trunk and postnodally, as well as anteriorly and posteriorly in the visceral yolk sac. Endoderm covering the posterior half of the early primitive streak contributed to postnodal endoderm after 1 day (at the late streak stage) and mainly to posterior visceral yolk sac endoderm after 2 days. Clonal descendants of axial endoderm were located after 2 days either over the embryo or in the yolk sac; the few exceptions spanned the caudal end of the embryo and the posterior yolk sac. The clonal analysis also showed that the endoderm layer along the posterior half of the axis of prestreak- and early-streak-stage embryos is heterogeneous in its germ layer fate. Whereas the germ layer location of descendants from anterior sites did not differ after 1 day from that expected from the initial controls (approx. 90% exclusively in endoderm), only 62% of the successfully injected posterior sites resulted in labelled cells exclusively in endoderm; the remainder contributed partially or entirely to ectoderm and mesoderm. This loss from the endoderm layer was compensated by posterior-derived cells that remained in endoderm having more surviving descendants (8.4 h population doubling time) than did anterior-derived cells (10.5 h population doubling time). There was no indication of cell death at the prestreak and early streak stages; at least 93% of the cells were proliferating and more than half of the total axial population were in, or had completed, a third cell cycle after 22 h culture.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Deep cytoplasmic rearrangements during early development in Xenopus laevis   总被引:4,自引:0,他引:4  
The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the deep cytoplasmic movements associated with the cortical rotation were studied in eggs vitally stained during oogenesis with a yolk platelet-specific fluorescent dye. During the first cell cycle, eggs labelled in this way develop a complicated swirl of cytoplasm in the animal hemisphere. This pattern is most prominent on the side away from which the vegetal yolk moves, and thus correlates in position with the prospective dorsal side of the embryo. Although the pattern is initially most evident near the egg's equator or marginal zone, extensive rearrangements associated with cleavage furrowing (cytoplasmic ingression) relocate portions of the swirl to vegetal blastomeres on the prospective dorsal side.  相似文献   

6.
Therian mammals (marsupials and eutherians) rely on a placenta for embryo survival. All mammals have a yolk sac, but while both chorio-allantoic and chorio-vitelline (yolk sac) placentation can occur, most marsupials only develop a yolk sac placenta. Insulin (INS) is unusual in that it is the only gene that is imprinted exclusively in the yolk sac placenta. Marsupials, therefore, provide a unique opportunity to examine the conservation of INS imprinting in mammalian yolk sac placentation. Marsupial INS was cloned and its imprint status in the yolk sac placenta of the tammar wallaby, Macropus eugenii, examined. In two informative individuals of the eight that showed imprinting, INS was paternally expressed. INS protein was restricted to the yolk sac endoderm, while insulin receptor, IR, protein was additionally expressed in the trophoblast. INS protein increased during late gestation up to 2 days before birth, but was low the day before and on the day of birth. The conservation of imprinted expression of insulin in the yolk sac placenta of divergent mammalian species suggests that it is of critical importance in the yolk sac placenta. The restriction of imprinting to the yolk sac suggests that imprinting of INS evolved in the chorio-vitelline placenta independently of other tissues in the therian ancestor of marsupials and eutherians.  相似文献   

7.
《Journal of morphology》2017,278(4):574-591
Embryos of oviparous reptiles develop on the surface of a large mass of yolk, which they metabolize to become relatively large hatchlings. Access to the yolk is provided by tissues growing outward from the embryo to cover the surface of the yolk. A key feature of yolk sac development is a dedicated blood vascular system to communicate with the embryo. The best known model for yolk sac development and function of oviparous amniotes is based on numerous studies of birds, primarily domestic chickens. In this model, the vascular yolk sac forms the perimeter of the large yolk mass and is lined by a specialized epithelium, which takes up, processes and transports yolk nutrients to the yolk sac blood vessels. Studies of lizard yolk sac development, dating to more than 100 years ago, report characteristics inconsistent with this model. We compared development of the yolk sac from oviposition to near hatching in embryonic series of three species of oviparous scincid lizards to consider congruence with the pattern described for birds. Our findings reinforce results of prior studies indicating that squamate reptiles mobilize and metabolize the large yolk reserves in their eggs through a process unknown in other amniotes. Development of the yolk sac of lizards differs from birds in four primary characteristics, migration of mesoderm, proliferation of endoderm, vascular development and cellular diversity within the yolk sac cavity. Notably, all of the yolk is incorporated into cells relatively early in development and endodermal cells within the yolk sac cavity align along blood vessels which course throughout the yolk sac cavity. The pattern of uptake of yolk by endodermal cells indicates that the mechanism of yolk metabolism differs between lizards and birds and that the evolution of a fundamental characteristic of embryonic nutrition diverged in these two lineages. Attributes of the yolk sac of squamates reveal the existence of phylogenetic diversity among amniote lineages and raise new questions concerning the evolution of the amniotic egg. J. Morphol. 278:574–591, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
Using the immunoblotting method, the synthesis of two copper-transporting P1-type ATPases, ATP7A (a candidate for the product of the Menkes disease gene) and ATP7B (presumed product of the Wilson disease gene), in the yolk sac cells of rat embryos at days 11 and 20 of embryogenesis was demonstrated. Concomitantly, yolk sac cells produce ceruloplasmin, a soluble copper-transporting glycoprotein, a proportion of which in secreted proteins progressively diminishes, attaining 5.2% at day 11 and 3.1% at day 20 of development. At different stages of embryogenesis, yolk sac cells synthesize two molecular forms of [14]C-ceruloplasmin, one of which is secreted towards the embryo, whereas the other, towards the decidual membrane. Two forms of ceruloplasmin secreted in polar directions differ in the rate of secretion. The role of the yolk sac as a key organ controlling the delivery and secretion of copper in the embryo during the postimplantation period is discussed.  相似文献   

9.
Macrophages are multifunctional cells that participate in numerous biological processes; they actively phagocytose foreign particles and cell debris. Embryonic tissue macrophages are present at early stages of mammalian development; their ontogeny and function is still under investigation. Our study used immunohistochemistry and electron microscopy to investigate early rat yolk sac macrophages using mouse antirat macrophage monoclonal antibodies (mAb) Mar 1 and Mar 3 produced by our laboratory. Mar 3 mAb revealed the first emergence of immature macrophages in the rat yolk sac at fetal day nine coinciding with the beginning of yolk sac haemopoiesis that consisted mainly of erythropoiesis, while Mar 1 mAb detected specifically rat yolk sac macrophages at about the 13th to 14th day of gestation. Immunoreactivity against Mar mAbs was mainly located in the yolk sac endodermal cell layer, which may signify endodermal origin of the yolk sac macrophages. Ultrastructurally mature yolk sac macrophages contained numerous endocytic vesicles or vacuoles, well-developed Golgi saccules and many electron dense granules in their cytoplasm and a number of microvillous projections from the cell surface. After establishment of the circulation between yolk sac and embryo, Mar 3 positive cells were also demonstrated inside fetal undifferentiated mesenchymal tissue at fetal day 12. The study demonstrated the first emergence of immature yolk sac macrophages being among the earliest haemopoietic cells formed in mammalian development. Thus, Mar mAbs managed to detect macrophage differentiation antigens through their development early in the rat yolk sac.  相似文献   

10.
Pregnant golden hamsters and mice of different gestational ages were injected intravenously with 109CdCl(2). The whole animal or the uterus and embryos were submitted to autoradiography. Cadmium administered on the 8th day accumulated in the primitive gut of the embryos. No cadmium was detected in the embryos after administration on or after the 9th day (hamster) and 11th day (mouse). This finding can be explained by the ability of cadmium to pass from the yolk-sac cavity into the primitive gut (where it is absorbed) before the closure of the vitelline duct but not later. This uptake by the embryo might explain the severe malformations produced by cadmium given on the 8th day as compared with the 9th day in the hamster. Cadmium is also heavily accumulated in the decidua (mainly the antimesometrial part), the yolk sac, the ectoplacental cone, and later in the chorioallantoic placenta-possibly disturbing the maternal-embryonic relationship and fetal nutrition. A high accumulation in the CL and the follicles and in the pituitary may also disturb reproductive function.  相似文献   

11.
Three spontaneous abortions with trisomy 2 were analyzed histologically. In one of these, beside chorionic membranes and villi, yolk sac, yolk stalk, body stalk and an embryo are described. Concerning the development stage there seems to be an order; villi and body stalk (16 days), embryo (end of 3rd week to beginning of 4th week) and yolk sac with yolk stalk (2nd half of 4th week).  相似文献   

12.
Rat embryos with intact visceral yolk sacs, explanted at 12 1/2 days of gestation, were cultured in vitro for up to 60 min in medium consisting of fetal calf serum, Eagle's MEM, and [3H]thymidine (1.2 kBq ml-1), using the roller bottle method. The total amount of 3H incorporated into the conceptus during the 60-min incubation was 79.2 Bq, and approximately 33, 23, and 44% of this activity was distributed to the embryo, the yolk sac, and the fluid in the exocoelom and amniotic cavity, respectively. The rate of 3H accumulation in conceptuses decreased with time in culture. It appeared that the decrease in the viability of the conceptus was not responsible for this phenomenon. The concentration of 3H in the yolk sac, i.e., 3H activity per gram wet weight, was 2.1 times that in the medium at the end of culture. In contrast, the 3H concentration in the embryo was significantly lower than that in the medium. These findings suggest that the visceral yolk sac of rat conceptuses may act as a barrier to the transport of tritiated thymidine between the medium and embryo.  相似文献   

13.
Using the immunoblotting method, the synthesis of two copper-transporting P1-type ATPases, ATP7A (a candidate for the product of the Menkes disease gene) and ATP7B (a presumed product of the Wilson disease gene), in the yolk sac cells of rat embryos at days 11 and 20 of embryogenesis was demonstrated. Concomitantly, yolk sac cells produce ceruloplasmin, a soluble copper-transporting glycoprotein, a proportion of which in secreted proteins progressively diminishes, attaining 5.2% at day 11 and 3.1% at day 20 of development. At different stages of embryogenesis, yolk sac cells synthesize two molecular forms of [14C]-ceruloplasmin, one of which is secreted towards the embryo, whereas the other, towards the decidual membrane. Two forms of ceruloplasmin secreted in polar directions differ in the rate of secretion. The role of the yolk sac as a key organ controlling the delivery and secretion of copper in the embryo during the postimplantation period is discussed.  相似文献   

14.
水稻中央细胞发育期间超微结构变化的观察   总被引:1,自引:0,他引:1  
本文通过透射电镜对水稻受精前胚囊中央细胞发育过程中超微结构的变化进行观察。结果表明,八核胚囊形成后很快就进行细胞化形成7个细胞,其中刚形成的中央细胞由1个大液泡、2个极核(珠孔端和合点端各1个)和一些含有丰富细胞器的胞质组成。中央细胞以后的发育主要是极核的发育和极核周围胞质的变化。极核发育经历以下过程:a.2个核都膨大呈“椭圆”形。核周围胞质呈不对称分布。b.2个核分别向胚囊中央移动并相互靠近。之后2个极核调整排列方式,由纵排(即与胚囊纵轴平行)变成横排。此时期有细胞质“桥”联结珠孔端卵器、2个极核和合点端反足细胞器。c.横排的极核移向卵器,并排列于卵细胞之上。此时胚囊未明显膨大,但极核相靠近的两边核膜有许多处已形成“融合桥”,核周围的胞质也起较大的变化,如质体内淀粉消失和光面内质网增加等。极核进一步发育直至胚囊成熟期间,极核排列方式及其周围胞质组成未观察到明显的变化,但胚囊体积明显增大。  相似文献   

15.
The rhythmic movements of fetal membranes in chick and reptile embryos were studied to explore the developmental role of the extra-embryonic motor activity. In the snakes Lamprophis fuliginosus and Elaphe radiata, rhythmic contractions of amnion inside the developing egg were recorded from the 11th incubation day until pre-hatching stages (ca. day 60-72). The duration of these contractions averaged 2.02+/-0.27 min. The frequency ranged from 2 to 6 per 10 min and averaged 4.61+/-0.57 per 10 min. A tendency of frequency to increase toward the end of embryogenesis was observed. Lowering the temperature from 28 to 20 degrees C significantly decreased the frequency of amnion contractions to 2.85+/-0.91 per 10 min. The isolated snake amnion retained its capacity for spontaneous contraction. Noradrenaline inhibited, acetylcholine stimulated and serotonin did not affect the rhythmic activity of the isolated snake amnion. Similar effects were found when these agents were applied into the snake amniotic cavity. In the chick, yolk sac rhythmic contractions were recorded from the fifth until the 12th incubation days. The duration of these contractions ranged from 15 to 60 s, their frequency averaged 11.8+/-3.18 per 10 min and depended on temperature. The low temperature threshold was approximately 30 degrees C. After surgical removal of the amnion and embryo, the yolk sac continued contracting inside the egg. The yolk sac rhythmic contractions likely participate in the space movement of the embryo inside the egg during embryogenesis.  相似文献   

16.
This study describes the morphological development and early growth of laboratory-raised chub, Leuciscus cephalus (L. 1758), larvae. Larvae hatched with relatively large yolk sacs, stayed motionless at the tank bottom and exhibited short and sudden bursts from time to time. They were olive in colour and with complete absence of melanophores on the body. Larvae were transparent but showed brownish eye pigment. Intense body pigmentation first appeared on day 4 after hatching. By day 8 the yolk sac was fully absorbed; only 30% of the initial population of larvae successfully established exogenous feeding. Fin rays first appeared on the dorsal and anal fins of larvae around day 12. Growth during the yolk sac stage was initially fast but slowed down with the increasing size of larvae at the time of yolk absorption. The specific growth rate (SGR) of larvae declined with time, although the total observation period was relatively short (12 days). SGR values ranged from 5.18 (day 2) to 2.97 (day 12). Only a negligible egg mortality was observed during the period of early endogenous feeding (between days 1 and 6), and about 45% towards the end of endogenous feeding and immediately after the yolk sac phase (between days 7 and 9). During the exogenous feeding period (between days 10 and 12) deaths were negligible.  相似文献   

17.
The dynamics of ceruloplasmin content was studied by immunochemical methods in the postimplantation rat embryos and postnatal animals. Ten to twenty two day old embryos contained ceruloplasmin (CP) in yolk sac, serum, and amniotic fluid. The highest CP levels were found in yolk sac. CP concentration profiles were almost identical in the serum and amniotic fluid being the highest on the 12th day (0.26 mg%) and the lowest (0.04) on the 16th day of gestation. CP concentration in the serum increased rapidly up to 3.5 mg% from the 17th day of gestation till the term (22nd day) while remaining at a constant and rather low level in the amniotic fluid. Within 16-18 days after birth, CP concentration in the serum remained at the level of 11 +/- 0.3 mg%. Later on it gradually increased and attained plateau (46-48 mg%) by the time of sex maturity. The maternal serum CP does not penetrate, in the embryo, as can be inferred from the experiments with 125I-CP injected into pregnant rats. Differences in the CP degradation rate and modes were found between the embryos and postnatal rats. It is suggested that CP is initially synthesized by the yolk sac endoderm during organogenesis (10-16 days of gestation) and predominantly by the liver during the foetal period (17-22 days).  相似文献   

18.
J B Lloyd 《Teratology》1990,41(4):383-393
The rat visceral yolk sac is active in pinocytosis. Macromolecules accumulated by the tissue are, in general, routed to the lysosomes, where they either accumulate (if non-digestible by the lysosomal enzymes) or are degraded to their monomeric components. The yolk sac cells engage in adsorptive pinocytosis, which leads to the preferential uptake of macromolecules bearing certain surface features, such as a hydrophobic or a cationic domain. Substrates that enter the yolk sac by adsorptive pinocytosis can in some cases act as bivalent ligands, carrying in a second substance by "piggy-back" pinocytosis. Pinocytosis and intralysosomal digestion of plasma proteins by the organogenesis-stage rat embryo play an important nutritional role, supplying a high proportion of the embryo's amino acid requirement. Teratogenic effects can be induced by substances that inhibit either pinocytosis or intralysosomal proteolysis at this sensitive stage of gestation.  相似文献   

19.
20.
During the perinatal period, calcium metabolism is stressed. As intestinal Ca-binding protein is considered as a molecular expression of the hormonal effect of 1,25-dihydroxycholecalciferol (1,25(OH)2D3), Ca-binding protin measurements may document the vitamin D roles during this period. We describe the variations of Ca-binding protein concentrations in the rat during the last 5 days of gestation, in the maternal duodenum, placentas, fetal membranes and fetal intestines. We also report intestinal Ca-binding protein changes from birth until weaning. The evolution of the maternal intestinal Ca-binding protein, which increases on day 19.5 of gestation, is consistent with that of calcium intestinal absorption and may be explained by increased 1,25(OH)2D3 production. Placental Ca-binding protein rises from day 17.5 until the end of gestation, and may be related to the profile of calcium transfer from mother to fetuses. It is noteworthy that the placental Ca-binding protein is predominantly found in the fetal part of the organ where materno-fetal exchanges occur. The yolk sac synthesizes substantial amounts of Ca-binding protein. In the fetal membranes, Ca-binding protein plateaus from day 17.5 until day 20.5 and decreases on day 21.5. The Ca-binding protein presence in the fetal placenta and in the yolk sac may suggest that these tissues are also targets for vitamin D. In the fetus the intestinal Ca-binding protein s is detected as early as day 17.5 of gestation and increases markedly during the last day of gestation. From birth and during the first 3 weeks of postnatal life, the intestinal Ca-binding protein concentration does not change. It undergoes a sharp rise just at the time of weaning. We have also shown that the specific distribution of Ca-binding protein along the intestine is acquired during intrauterine life and does not change with sucking or weaning. The two main changes of intestinal Ca-binding protein, observed just before birth and at weaning, may reflect the intestinal maturation and/or variations in vitamin D metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号