首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a comprehensive theory and experimental characterisation of the modulation of the fluorescence intensity by the construction of optical interferences on oxidised silicon substrates used for DNA microarrays. The model predicts a 90-fold variation of the fluorescence signal depending on the oxide thickness. For a Cy3 dye, the signal is maximal for a 90 nm oxide thickness corresponding to a 7.5-fold enhancement with respect to a standard glass substrate. For experimental validation of the model, we have prepared Si/SiO2 substrates with different parallel steps of decreasing oxide thicknesses on the same sample using a buffered oxide etch (BOE) etching process after thermal oxidation. The SiO2 surface has been functionalized by a silane monolayer before in situ synthesis of L185 oligonucleotide probes. After hybridisation with complementary targets, the variations of the fluorescence intensity versus oxide thickness are in very good accordance with the theoretical model. The experimental comparison against a glass substrate shows a 10-fold enhancement of the detection sensitivity. Our results demonstrate that a Si/SiO2 substrate is an attractive alternative to standard glass slides for the realisation of fluorescence DNA microarrays whenever detection sensitivity is an important issue.  相似文献   

2.
3.
SNP Chart is a Java application for the visualization and interpretation of microarray genotyping data primarily derived from arrayed primer extension-based chemistries. Spot intensity output files from microarray analysis tools are imported into SNP Chart, together with a multi-channel TIFF image of the original array experiment and a list of the actual single nucleotide polymorphisms (SNPs) being tested. Data from different and/or replicate probes that interrogate the same SNP, but that are scattered across the array grid, can be reassembled into a single chart format, specific for the SNP. This allows a quick and very effective 'visualization'/'quality control' of the data from multiple probes for the same SNP that can be easily interpreted and manually scored as a genotype. AVAILABILITY: http://www.snpchart.ca.  相似文献   

4.
In microarrays experiments, a serious limitation is the unreliability of low signal intensities data and the lack of reproducibility for the resulting ratios between samples and controls. Most of the light emitted by a fluorophore at the air/glass interface of a glass slide is absorbed by the glass so just a part of the emitted fluorescence is detected. To improve the sensitivity of the fluorescence detection of both common fluorophores Cy3 and Cy5 in DNA microarrays and fluorescent cell analyses, we have designed a multi layer mirror with alternative thin layers of SiO2 and HfO2. This mirror (MOTL) prevents fluorescence absorption, allows the simultaneous enhancement of the fluorescence signals and increases the dynamic range of the slides. Using MOTL slides, Cy3 and Cy5 intensities are enhanced by 5-8-fold, consequently, the fluorescence analysis becomes easier and should allow the detection of low copy number genes or weakly fluorescent cells. With the same approach, other multiple optical thin layer slides could be designed for other series of fluorophores, extending the field of their applications.  相似文献   

5.
Virus-mediated gene delivery has been, to date, the most successful and efficient method for gene therapy. However, this method has been challenged because of serious safety concerns. Over the past decade, mesoporous silica nanoparticles (MSNs) have attracted much attention for intracellular delivery of nucleic acids. Delivery of cellular plasmid DNA (pDNA) is designed to replace the function of a defective gene and restore its normal function in the cell. Delivery of small interfering RNAs (siRNAs) can selectively knockdown genes by targeting specific mRNAs. The biocompatibility and unique structures of MSNs make these nanoparticles ideal candidates to act as biomolecule carriers. This concise review highlights current progress in the field of nucleic acid delivery using MSNs, specifically for delivery of pDNA, siRNA, and combinatorial delivery of nucleic acids and drugs. The review describes important design parameters presently being applied to MSNs to administer drugs and therapeutic nucleic acids.  相似文献   

6.
Recent developments in the technology of capillary-fiber optics suitable for X-rays in the range of approximately 4-10keV point to the possible realization of endoscopes applicable in X-ray fluorescence analysis. A general problem is the determination of scattering and absorption processes with consideration to tissue optics, X-ray scattering and X-ray absorption in a diagnostic partial volume. Therefore comparative investigations were performed in order to answer these questions. Zinc-oxide nanoparticles configured as single particles and ZnO clusters provided the fluorescence source in cell layers. An artificial scattering material was employed, which closely approximated the tissue optical conditions and the X-ray optical application conditions in possible diagnostic situations. As a result imaging of spatially resolved X-ray contrasts was better than adequate optical fluorescence imaging by approximately one magnitude. Hence a very important precondition for realizing X-ray fluorescence endoscopy is fulfilled.  相似文献   

7.
The compact disc (CD) is an ideal toolfor reading, writing, and storing numeric information. It was used in this work as a support for constructing DNA microarrays suited for genomic analysis. The CD was divided into two functional areas: the external ring of the CD was used for multiparametric DNA analysis on arrays, and the inner portion was usedfor storing numeric information. Because polycarbonate and CD resins autofluoresce, a colorimetric method for DNA microarray detection was used that is well adaptedfor the fast detection necessary when using a CD reader. A double-sided CD reader was developed for the simultaneous analysis of both array and numeric data. The numeric data are engraved as pits in the CD tracks and result in the succession of 0/1, which results from the modulation of the laser reflection when one reads the edges of the pits. Another diffraction-based laser was placed above the CD for the detection of the DNA targets on the microarrays. Both readersfit easily in a PC tower. Both numeric and genomic information data were simultaneously acquired, and each array was reconstituted, analyzed, and processed for quantification by the appropriate software.  相似文献   

8.
The application of optical traps has come to the fore in the last three decades. They provide a powerful, sterile and noninvasive tool for the manipulation of cells, single biological macromolecules, colloidal microparticles and nanoparticles. An optically trapped microsphere may act as a force transducer that is used to measure forces in the piconewton regime. By setting up a well-calibrated single-beam optical trap within a fluorescence microscope system, one can measure forces and collect fluorescence signals upon biological systems simultaneously. In this protocol, we aim to provide a clear exposition of the methodology of assembling and operating a single-beam gradient force trap (optical tweezers) on an inverted fluorescence microscope. A step-by-step guide is given for alignment and operation, with discussion of common pitfalls.  相似文献   

9.
The 70kDa heat shock proteins (Hsp70) are molecular chaperones that assist in folding of newly synthesized polypeptides, refolding or denaturation of misfolded proteins, and translocation of proteins across biological membranes. In addition, Hsp70 play regulatory roles in signal transduction, cell cycle, and apoptosis. Here, we present a novel assay platform based on fluorescence polarization that is suitable for investigating the yet elusive molecular mechanics of human Hsp70 allosteric regulation.  相似文献   

10.
Grating-coupled surface plasmon resonance (GCSPR) is a method for the accurate assessment of analyte in a multiplexed format using small amounts of sample. In GCSPR, the analyte is flowed across specific receptors (e.g. antibodies or other proteins) that have been immobilized on a sensor chip. The chip surface is illuminated with p-polarized light that couples to the gold surface's electrons to form a surface plasmon. At a specific angle of incidence, the GCSPR angle, the maximum amount of coupling occurs, thus reducing the intensity of reflected light. Shifts in the GCSPR angle can be correlated with refractive index increases following analyte capture by chip-bound receptors. Because regions of the chip can be independently analyzed, this system can assess 400 interactions between analyte and receptor on a single chip. We have used this label-free system to assess a number of molecules of immunological interest. GCSPR can simultaneously detect an array of cytokines and other proteins using the same chip. Moreover, GCSPR is also compatible with assessments of antigen expression by intact cells, detecting cellular apoptosis and identifying T cells and B cells. This technology represents a powerful new approach to the analysis of cells and molecular constituents of biological samples.  相似文献   

11.
We demonstrate the microfabrication of a low-noise silicon based device with integrated silver/silver chloride electrodes used for the measurement of single ion channel proteins. An aperture of 150 microm diameter was etched in a silicon substrate using a deep silicon reactive ion etcher and passivated with 30 nm of polytetrafluoroethylene via chemical vapor deposition. The average recorded noise in measurements of lipid bilayers was reduced by a factor of four through patterning of a 75 microm thick SU-8 layer around the aperture. Integrated electrodes were fabricated on both sides of the device and used for repeatable, stable, giga-seal bilayer formations as well as characteristic measurements of the transmembrane protein OmpF porin.  相似文献   

12.
Sputtered silicon nitride optical waveguide surfaces were silanized and modified with a hetero-bifunctional crosslinker to facilitate thiol-reactive immobilization of contact-printed DNA probe oligonucleotides, streptavidin and murine anti-human interleukin-1 beta capture agents in microarray formats. X-ray photoelectron spectroscopy (XPS) was used to characterize each reaction sequence on the native silicon oxynitride surface. Thiol-terminated DNA probe oligonucleotides exhibited substantially higher surface printing immobilization and target hybridization efficiencies than non-thiolated DNA probe oligonucleotides: strong fluorescence signals from target DNA hybridization supported successful DNA oligonucleotide probe microarray fabrication and specific capture bioactivity. Analogously printed arrays of thiolated streptavidin and non-thiolated streptavidin did not exhibit noticeable differences in either surface immobilization or analyte capture assay signals. Non-thiolated anti-human interleukin-1 beta printed on modified silicon nitride surfaces reactive to thiol chemistry exhibited comparable performance for capturing human interleukin-1 beta analyte to commercial amine-reactive microarraying polymer surfaces in sandwich immunoassays, indicating substantial non-specific antibody-surface capture responsible for analyte capture signal.  相似文献   

13.
A novel graphitized ordered macroporous carbon (GMC, pore size 380 nm) with hierarchical mesopores (2–30 nm) and high graphitization degree was prepared by nickel-catalyzed graphitization of polystyrene arrays. The obtained GMC possessed high specific surface area, large pore volume, and good electrical conductivity, which was explored for the enzyme entrapment and biosensor fabrication by a facile method. With advantages of novel nanostructure and good electrical conductivity, direct electrochemistry of hemoglobin (a model protein) was observed on the GMC-based biocomposite with a formal potential of −0.36 V (vs. Ag/AgCl) and an apparent heterogeneous electron transfer rate constant (ks) of 1.2 s−1 in pH 7.0 buffer. Comparative studies revealed that GMC offered significant advantages over carbon nanotubes (CNTs) in facilitating direct electron transfer of entrapped Hb. The fabricated biosensor exhibited good sensitivity (101.6 mA cm−2 M−1) and reproducibility, wide linear range (1–267 μM), low detection limit (0.1 μM), and good long-term stability for H2O2 detection. GMC proved to be a promising matrix for enzyme entrapment and biosensor fabrication, and may find wide potential applications in biomedical detection and environmental analyses.  相似文献   

14.
In the present work the layer-by-layer nano-assembly technique was used for the development of complex catalytic microparticles on the basis of firefly luciferase (FL). FL films containing 1, 2, or 3 monolayers were assembled on silver electrode QCM-resonators and on 520-nm diameter sulfonated polystyrene latex by alternate adsorption of FL and polycations using electrostatic interactions for the interlayer interaction. The assembly process was studied with quartz crystal microbalance, UV-vis spectroscopy, and microelectrophoresis (surface potential). Structural studies of the resulting multilayers confirmed stepwise deposition of FL and cationic poly(dimethyldiallyl ammonium chloride) with a bilayer thickness of 14 nm; a systematic shift of the surface potential from +28 mV for poly(dimethyldiallyl ammonium chloride) to -14 mV for luciferase outermost layer was established. The functionality and stability of the biocolloids were demonstrated by monitoring the intensity of the light emission. Factors influencing the light emitted upon catalytic activity of FL such as the number of luciferase layers in the film and polyion layer at the outermost layer were studied.  相似文献   

15.
As a high throughput technique, microarray experiments produce large data sets, consisting of measured data, laboratory protocols, and experimental settings. We have implemented the open source platform EMMA to store and analyze these data. The system provides automated pipelines for data processing and has a modular architecture that can be easily extended. EMMA features detailed reports about spots and their corresponding measurements. In addition to routine data analysis algorithms, the system can be integrated with other components that contain additional data sources (e.g. genome annotation systems).  相似文献   

16.
The demand for new materials and products is still growing and the interest in naturally formed biopolymers and biominerals, such as chitin, calcium precipitates and silica is increasing. Photosynthesizing microalgae of the family Bacillariophyceae (diatoms) produce silica exoskeletons with a potential to be used in specific industrial or technological processes, they also are an excellent model in studies of silicon biomineralization. In contrast to geologically aged diatomaceous earth, the freshly prepared silica of cultured or harvested natural diatoms has been characterized insufficiently with respect to the properties (e.g. purity, specific surface area, porosity) required for technological and industrial application. In this contribution we summarize aspects of cellular processes that are involved in silicon biomineralization of diatoms and the current knowledge of the characterization of diatomaceous silica, following methods used for synthetically derived silica-based materials.  相似文献   

17.
Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs. In this work, a prototype “universal” GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-GM1, with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-GM2). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent microarrays that incorporate GSLs for serodiagnosis is discussed.  相似文献   

18.
Zhang G  Li C  Lu Y  Hu H  Xiang G  Liang Z  Liao P  Dai P  Xing W  Cheng J 《Biosensors & bioelectronics》2011,26(12):4708-4714
We have established a mobile phone-assisted microarray decoding platform for signal-enhanced mutation detection. A large amount of single-stranded DNA (ssDNA) was obtained by combining symmetric PCR and magnetic isolation, and ssDNA prepared with magnetic bead as label was further allowed to hybridize against the tag-array for decoding purpose. High sensitivity and specificity was achieved with the detection of genomic DNA. When simultaneously genotyping nine common mutations associated with hereditary hearing loss, the detection limit of 1 ng genomic DNA was achieved. Significantly, a mobile phone was also used to record and decode the genotyping results through a custom-designed imaging adaptor and a dedicated mobile phone software. A total of 51 buccal swabs from patients probably with deafness-related mutations were collected and analyzed. The genotyping results were all confirmed by fluorescence-based laser confocal scanning and direct DNA sequencing. This mobile phone-assisted decoding platform provides an effective but economic mutation detection alternative for the future quicker and sensitive detection of virtually any mutation-related diseases in developing and underdeveloped countries.  相似文献   

19.
A comprehensive understanding of ROS (reactive oxygen species)-dependent cellular interaction requires the previously unmet ability to simultaneously monitor the intra- and extra-cellular environments. The present review assesses the potential of novel electrochemical and fluorescent-based nanosensor approaches to address the limitations of existing techniques for ROS analysis. Data generated by these new approaches have already contributed significantly to current understanding of the roles that these species play in various in vitro scenarios. However, integration of these novel approaches has the potential to offer, for the first time, the unparalleled ability to measure simultaneously and in real-time ROS flux in both the intra- and extra-cellular environments.  相似文献   

20.
In this paper, we demonstrate in situ synthesis of oligonucleotide probes on poly(dimethylsiloxane) (PDMS) microchannels through use of conventional phosphoramidite chemistry. PDMS polymer was moulded into a series of microchannels using standard soft lithography (micro-moulding), with dimensions <100 μm. The surface of the PDMS was derivatized by exposure to ultraviolet/ozone followed by vapour phase deposition of glycidoxypropyltrimethoxysilane and reaction with poly(ethylene glycol) spacer, resulting in a reactive surface for oligonucleotide coupling. High, reproducible yields were achieved for both 6mer and 21mer probes as assessed by hybridization to fluorescent oligonucleotides. Oligonucleotide surface density was comparable with that obtained on glass substrates. These results suggest PDMS as a stable and flexible alternative to glass as a suitable substrate in the fabrication and synthesis of DNA microarrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号