首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of indomethacin, Leukotriene C4 (LTC4), LTD4 and LTE4 were shown to be contractile agents on guinea pig gall bladder strips. The respective pD2 values for LTC4, LTD4 ad LTE4 were 9.1, 9.1 and 7.7. The contractile effects of LTD4 were not mediated through the generation of cyclooxygenase products and were antagonized by the SRS-A antagonist FPL-55712. The effects of PGE1, PGF2α, the endoperoxide analogue U44069 and histamine on gall bladder strips were also examined. All these agents caused dose-related contractions but were considerably less potent than the leukotrienes. Leukotrienes are therefore potent contractile agents on the guinea pig gall bladder and may contribute to gall bladder contractions or spasms .  相似文献   

2.
G Kito  H Okuda  S Ohkawa  S Terao  K Kikuchi 《Life sciences》1981,29(13):1325-1332
Leukotrienes C4 (LTC4) and D4 (LTD4), major components of slow-reacting substances of anaphylaxis (SRS-A), caused dose-dependent contractions of rabbit coronary arteries in concentrations of 10?9 to 10?7 M and 10?10 to 10?7 M, respectively. The potency of LTC4 and LTD4, when compared with the concentration that elicits half of the contraction induced by 25 mM KCl, was 17 and 76 times, respectively, greater than that of histamine. In contrast, other blood vessels from rabbits were either unresponsive (renal artery and vein, mesenteric artery and thoracic aorta) or only weakly responsive (pulmonary artery and vein and portal vein) to both leukotrienes even at 10?7 M. The LTD4-induced coronary contraction was inhibited by FPL 55712 (10?7 and 10?6 M), a selective SRS-A inhibitor, in a dose-dependent manner, but not by diphenhydramine (10?7 M), a histamine H1-receptor blocker or by indomethacin (10?5 M), a prostaglandin synthetase inhibitor, suggesting that LTD4 has a direct effect on the coronary arteries. These results indicate that the leukotrienes may act as potent, selective coronary vasoconstrictors and that SRS-A responsive receptors exist in the rabbit coronary artery.  相似文献   

3.
When chopped porcine pulmonary arteries were incubated with calcium ionophore A23187 (1) in the presence of indomethacin there was a time dependent generation of a substance which produced contractions of superfused strips of guinea-pig ileum smooth muscle (GPISM) which were indistinguishable from those induced by LTD4. This material however had a different retention time from LTD4 when subjected to HPLC and co-chromatographed with synthetic LTE4. In addition to LTE4 a substance which had properties indistinguisable from those of LTB4 when assayed on a combination of guinea-pig lung parenchymal strips (GPP) and GPISM (2) was generated from the pulmonary artery. This substance co-chromatographed with synthetic LTB4. The adventitia and intima were the richest source of LTE4, the adventitia releasing slightly more than the intima. The output of LTB4 and LTE4 was inhibited by 6,9-deepoxy-6,9-(phenylimino)-Δ6,8 prostaglandin I1 (U-60,257). Nordihydroguaiaretic acid (NDGA) inhibited the generation of LTE4.  相似文献   

4.
Leukotriene D4 (LTD4) when administered intravenously or by aerosol to guinea pigs produced changes in pulmonary mechanics including a decrease in dynamic compliance and an increase in pulmonary resistance. The effects of intravenous LTD4 (0.5 μg kg−1) were short lived and abolished by pretreatment of the animal with either cyclooxygenase inhibitors, a thromboxane synthetase inhibitor (OKY 1555) or an SRS-A antagonist (FPL 55712). These findings suggest that bronchoconstriction produced by the intravenous infusion of LTD4 at 0.5 μg kg−1 is due to the release of thromboxane A2. However, in animals treated with indomethacin, LTD4 at higher doses (>0.8 μg kg−1) still elicited a bronchoconstriction which could be blocked by FPL 557112. Nebulization of 0.1 – 1.0 μg of LTD4 into the lung produced prolonged changes in pulmonary mechanics which were inhibited by FPL 55712 and were potentiated indomethacin. LTD4, therefore, when administered by aerosol produced effects on the lung which were not mediated by cyclooxygenase products. Responses to nebulized rather than intravenous LTD4 in the guinea pig may more closely resemble those seen in human tissues.  相似文献   

5.
The effects of leukotriene D4 (LTD4) on pulmonary mechanics were investigated in anesthetized, paralyzed cats under conditions of controlled ventilation. Intravenous injections of LTD4 in doses of 3, 10, and 30 μg caused significant increases in transpulmonary pressure (PTP) and lung resistance (RL) while decreasing dynamic compliance (Cdyn). LTD4 also increased systemic arterial pressure (PA0). The changes in PTP, RL, and Cdyn in response to LTD4 were blocked by sodium meclofenamate, a cyclooxygenase inhibitor. However, there was no significant change in the increase in PA0 following cyclooxygenase blockade. U 46619, a thromboxane mimic, was 30 to 100 times more potent than LTD4 in increasing PTP, RL and decreasing Cdyn in the cat. These data show that LTD4 has significant smooth muscle constrictor activity in central airways as well as peripheral portions of the feline lung. In addition, these data suggest that in the cat the actions of intravenously administered LTD4 on lung mechanics are mediated by release of cyclooxygenase products while the systemic pressor effects are not dependent upon the integrity of the cyclooxygenase pathway.  相似文献   

6.
Although the bronchoconstriction induced by leukotriene D4 (LTD4) has been reported to be partly mediated by thromboxane A2 (TXA2) in the guinea-pig airway, it is not known which part of the airway is susceptible to TXA2. In order to determine the role of TXA2 in the central and peripheral airways, we compared the effect of a TXA2 antagonist on tracheal strips to its effect on parenchymal strips of guinea-pigs. Tracheal and parenchymal strips were mounted in a 3.5 ml organ bath filled with Krebs-Henseleit solution aerated with 95% O2, 5% CO2 and kept at 37°C. After equilibration for 60 min in Krebs solution, the strip was contracted by exposure to 10−5 M of acetylcholine (ACh). Sixty minutes after ACh was eliminated, the concentration-response curve to LTD4 (10−9 M–10−7 M) was obtained, and the LTD4-induced contractions were expressed as the percent of the contraction evoked by 10−5 M of ACh. We measured the contractile response to LTD4 in the presence or absence of the TXA2 antagonist, BAY u3405 (10−8 M–10−6 M). In the tracheal strips, BAY u3405 had no effect on the LTD4-induced contraction. However, in parenchymal strips, BAY u3405 significantly suppressed the contractile response to LTD4. These results suggest that in the central airway LTD4 contracts smooth muscle directly, but that in the peripheral airway LTD4 induces smooth muscle contraction both directly and indirectly, via TXA2.  相似文献   

7.
Synthetic leukotrienes (LT) C4 and D4 elicited concentration-dependent contractions of the guinea pig uterus between 10?8-10?6M, whereas LTE4 appeared 1000-fold weaker. The potencies of LTC4 and LTD4 were similar to that of acetylcholine and PGF but weaker than that of PGE2. The maximal contractions elicited by LTC4 and LTD4 were 66.0 ± 2.1% and 63.8 ± 4.6% that elicited by acetylcholine. FPL 55712 (10?5M) antagonized the uterine contractile activity of LTD4, while meclofenamic acid at 10?5M but not at 10?6M also antagonized the LTD4-induced contration. Radioimmunoassay of the uterine tissue bathing fluid following LTD4 indicated the variable presence of low concentrations of PGE2, PGF and TXB2. These results demonstrate the LTC4 and LTD4 possess significant uterine contractile activity, which may only partially be mediated indirectly via prostaglandin products.  相似文献   

8.
The contraction elicited by leukotriene (LT) C4 and D4 on isolated guinea pig trachea were characterized under conditions in which LTC4 to LTD 4 metabolism was blocked by presence of 45 mM ?-serine-borate complex (SB). The presence of Sb caused a shift of the LTC4-concentration-response curve to the left by 7.5-fold, and blocked the bioconversion of LTC4 to LTD4 by the trachea as estimated by HPLC analysis of the LTs present in the tissue bath fluid. The potency of FPL 55712 as an antagonist of the LTC4-induced contractions in the presence of SB was 15-30-fold less than its potency as an antagonist of the LTD4-induced contractions. In contrast, another LT antagonist, Sk&F 101132, equally antagonized the contractions elicited by LTC4 and LTD4 in either the presence or absence of SB. The differential antagonism of LTC4 and LTD4 implies the existence of multiple pharmacologic receptors for the LTs. The calcium channel entry blockers, nifedipine and verapamil, at concentrations as high as 10 μM, suppressed the maximal LTC4-induced contraction by no more than 20%. whereas the purported intracellular calcium antagonist, TMB-8, completely suppressed the LTC4 concentration-response curve in the presence of SB, a profile identical to that previously reported for LTD4. Thus, if multiple LT receptors exist, they appear to mobilize calcium in a qualitatively similar fashion following LT stimulation.  相似文献   

9.
The effects of the 5-lipoxygenase inhibitors nordihydroguiaretic acid (NDGA), 5,8,11,14-eicosatetraynoic acid (ETYA), 1-phenyl-3-pyrazolidone (phenidone) and BW-755c, on the contractile response to LTC4 or LTD4 were examined on the isolated guinea pig trachea. Responses to either LTC4 or LTD4 or LTD4 were obtained on indomethacin treated tissues, in the presence of either L-serine-borate complex or L-cysteine, respectively, to exhibit metabolic conversion of the leukotrienes. NDGA (30 μM) and ETYA (100 μM) produced a selective competitive antagonism of LTD4 - induced contractions, while phenidone antagonized both LTC4- and LTD4 - induced responses in a non-competitive manner. In contrast, BW-755c (30 μM) did not significantly antagonize LTC4 or LTD4 concentration-response curves. The results suggest that leukotriene antagonism may be produced by large concentrations of some 5-lipoxygenase inhibitors.  相似文献   

10.
The biological actions of pure slow-reacting substance of anaphylaxis (SRS-A) from guinea-pig lung, pure slow-reacting substances (SRS) from rat basophilic leukaemia cells (RBL-1) and synthetic leukotrienes C4 (LTC4) and D4 (LTD4) have been investigated on lung tissue from guinea pig, rabbit and rat. In the guinea pig, the leukotrienes released cyclo-oxygenase products from the perfused lung and contracted strips of parenchyma. The effects of SRS-A, SRS and LTD4 were indistinguishable. LTC4 and LTD4 had similar actions although LTD4 was more potent than LTC4. Indo-methacin (1 μg/ml) inhibited the release of cyclo-oxygenase products from perfused guinea-pig lung and caused a marked reduction in contractions of guinea-pig parenchymal strips (GPP) due to LTC4 and LTD4. The residual contraction on the GPP was abolished by FPL 55712 (0.5 – 1.0 μg/ml). It appears, therefore, that a major part of the constrictor actions of LTC4 and LTD4 in guinea-pig lung are mediated by myotropic cyclo-oxygenase products, i.e. thromboxane A2 (TxA2) and prostaglandins (PGs).In rabbit and rat lung, however, SRS-A, SRS and the leukotrienes were much less potent in contracting parenchymal strips and there was little evidence of the release of cyclo-oxygenase products. FPL 55712 at a concentration of 1 μg/ml failed to antagonise leukotriene-induced contractions.  相似文献   

11.
In view of the likely production of monohydroxyeicosatetraenoic acid (HETE's) in bronchial asthma, the role of these lipoxygenase products in the development of a classical clinical element of airway disease, namely airway hyperreactivity, has been investigated. Tracheas removed from guinea-pigs actively sensitized to ovalbumin produced, upon antigenic challenge (0.01 μg/ml), a 17-fold increase (0.97 ± 0.34 ng/ml to 16.73 ± 1.58 ng/ml) in the amount of 5-hydroxyeicosatetraenoic acid (5-HETE) as measured by radioimmunoassay of the tissue-bath fluid, indicating that this tissue is capable of producing 5-HETE. While 5-HETE alone, at concentrations equal to or greater than those found during the above antigenic response (0.001 to 1.0 μM), failed to produce intrinsic contractions of normal, nonsensitized guinea-pig trachea, a 30 min pretreatment with 5-HETE (1.0 μM) enhanced subsequent LTD4-induced contractions. Pretreatment with either 12- or 15-HETE, at similar concentrations and conditions, failed to potentiate LTD4 concentration-response curves. The effect of 5-HETE was time-dependent, since pretreatment for either 15 or 60 min had little or no effect on subsequent LTD4 responses. Also, the 5-HETE-induced enhancement seemed specific fot LTD4, since contractions to LTC4 (in the presence of l-serine borate), acetylcholine, histamine, PGD2 or U-46619 were unaffected by 5-HETE. Therefore, 5-HETE may have a role in the development of airway hyperreactivity by interacting with released LTD4 to exacerbate airway smooth muscle contraction in asthma.  相似文献   

12.
The purpose of our investigation was to assess the role of the endothelium in the vasomotor effects of leukotrienes. Norepinephrine-preconstricted rings isolated from guinea pig main pulmonary artery and thoraic aorta responded to LTC4 and LTD4 with a concentration-dependent relaxation. In endothelium-denuded rings, both LTC4 and LTD4 caused a concentration-dependent contraction. The LTD4 receptor antagonist ICI 198, 615 inhibited both LTC4- and LTD4-induced relaxation and contraction. Inhibition of γ-glutamyl transpeptidase with AT-125 prevented the effects of LTC4, but not those of LTD4. The relaxant effect of LTD4 was not modified by indomethacin, but was abolished by methylene blue. We conclude that: 1)LTD4 induces a receptor-mediated endothelium-dependent relaxation of cavian pulmonary artery and aorta; 2) the vasorelaxant effect of LTC4 requires its conversion to LTD4; 3) the vasorelaxant effect of LTD4 is unrelated to PGI2 release, and is probably due to the release of an “EDRF”; 4) the removal of the endothelium reveals a direct receptor-mediated vasoconstricting effect of leukotrienes.  相似文献   

13.
Leukotriene D4 (LTD4)-induced bronchoconstriction in guinea-pig airways has a cyclooxygenase (COX)-dependent component. The main objective of this study was to establish if prostaglandin (PG) D2-induced bronchoconstriction also was modulated by COX products. The effects of non-selective and selective COX-1 and COX-2 inhibitors on bronchoconstriction induced by LTD4 and PGD2 were investigated in the perfused and ventilated guinea-pig lung (IPL). Both LTD4-induced bronchoconstriction and thromboxane (TX) A2 release was suppressed by COX inhibitors or by TX synthesis inhibition. The release of additional COX products following CysLT1 receptor activation by LTD4 was established by measurements of immunoreactive 6-keto PGF (a stable metabolite of PGI2) and PGE2. In contrast, TP receptor-mediated bronchoconstriction by PGD2 was somewhat enhanced by COX inhibitors, and there was no measurable release of COX products after TP receptor activation with U-46619. PGE2 was bronchoprotective in IPL as it inhibited the histamine-induced bronchoconstriction. In the isolated guinea-pig trachea, neither PGD2 nor U-46619 actively released PGE2, but continuous production of PGE2 and PGI2 was established, and the response to PGD2 was enhanced also in the trachea by COX inhibition. The study documented that bronchoconstriction induced by LTD4 and PGD2 in IPL was modulated differently by COX products. Whereas bronchoconstriction induced by LTD4 was amplified predominantly by secondarily released TXA2, that induced by PGD2 was attenuated by bronchoprotective PGE2 and PGI2, presumably tonically produced in the airways.  相似文献   

14.
The biological effects of leukotriene (LT)F4 were compared, on a molar basis, with those of LTC4, LTD4 and LTE4 on isolated superfused strips of guinea-pig ileum smooth muscle (GPISM) and lung parenchyma (GPP). LTF4 was 1–2 orders of magnitude less active than the other leukotrienes on GPISM (LTD4 > LTC4 > LTE4 > LTF4) whereas, in the GPP, the activity of LTF4 was comparable with that of LTE4, both leukotrienes being about one order of magnitude less active than LTC4 or LTD4 (LTC4=LTD4 > LTE4=LTF4). Further, LTF4 caused protracted contractions of the GPP which were indistinguishable from those due to LTE4 and of a much longer duration than responses elicited by either LTC4 or LTD4.FPL 55712 (1.9μM) antagonised actions of LTF4 in both tissue preparations. Indomethacin (2.8μM) inhibited contractions induced by LTF4 in GPP indicating that part of the bronchoconstriction due to LTF4, like that elicited by the other leukotrienes, is mediated via release of cyclo-oxygenase products.  相似文献   

15.
Leukotriene D4 (5 μg/ml) aerosol constricts airways of dogs with nonspecific airway hyperreactivity but not of mongrel dogs which lack nonspecific airway hyperreactivity. RL increased 200 + 25% and Cdyn decreased to 77 ± 5% of the pre-challenge value. LTD4 (10 μg/ml) produced no further increase. Atropine (0.2 mg/kg) prevented the increase in RL and decrease in Cdyn, suggesting that part of the effect of LTD4 on airways is neurally mediated.  相似文献   

16.
Stimulation with leukotriene D4 (LTD4) (3–100 nm) induces a transient increase in the free intracellular Ca2+ concentration ([Ca2+] i ) in Ehrlich ascites tumor cells. The LTD4-induced increase in [Ca2+] i is, however, significantly reduced in Ca2+-free medium (2 mm EGTA), and under these conditions stimulation with a low LTD4 concentration (3 nm) does not result in any detectable increase in [Ca2+] i . Addition of LTD4 (3–100 nm) moreover accelerates the KCl loss seen during Regulatory Volume Decrease (RVD) in cells suspended in a hypotonic medium. The LTD4-induced (100 nm) acceleration of the RVD response is also seen in Ca2+-free medium and also at 3 nm LTD4, indicating that LTD4 can open K+- and Cl-channels without any detectable increase in [Ca2+] i . Buffering cellular Ca2+ with BAPTA almost completely blocks the LTD4-induced (100 nm) acceleration of the RVD response. Thus, the reduced [Ca2+] i level after BAPTA-loading or buffering of [Ca2+] i seems to inhibit the LTD4-induced stimulation of the RVD response even though the LTD4-induced cell shrinkage is not necessarily preceded by any detectable increase in [Ca2+] i . The LTD4 receptor antagonist L649,923 (1 μm) completely blocks the LTD4-induced increase in [Ca2+] i and inhibits the RVD response as well as the LTD4-induced acceleration of the RVD response. When the LTD4 receptor is desensitized by preincubation with 100 nm LTD4, a subsequent RVD response is strongly inhibited. In conclusion, the present study supports the notion that LTD4 plays a role in the activation of the RVD response. LTD4 seems to activate K+ and Cl channels via stimulation of a LTD4 receptor with no need for a detectable increase in [Ca2+] i . Received: 25 September 1995/Revised: 25 January 1996  相似文献   

17.
Stimulation of Ehrlich ascites tumor cells with leukotriene D4 (LTD4) within the concentration range 1–100 nm leads to a concentration-dependent, transient increase in the intracellular, free Ca2+ concentration, [Ca2+] i . The Ca2+ peak time, i.e., the time between addition of LTD4 and the highest measured [Ca2+] i value, is in the range 0.20 to 0.21 min in ten out of fourteen independent experiments. After addition of a saturating concentration of LTD4 (100 nm), the highest measured increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-containing medium is 260 ± 14 nm and the EC50 value for LTD4-induced Ca2+ mobilization is estimated at 10 nm. Neither the peptido-leukotrienes LTC4 and LTE4 nor LTB4 are able to mimic or block the LTD4-induced Ca2+ mobilization, hence the receptor is specific for LTD4. Removal of Ca2+ from the experimental buffer significantly reduces the size of the LTD4-induced increase in [Ca2+] i . Furthermore, depletion of the intracellular Ins(1,4,5)P3-sensitive Ca2+ stores by addition of the ER-Ca2+-ATPase inhibitor thapsigargin also reduces the size of the LTD4-induced increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-containing medium, and completely abolishes the LTD4-induced increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-free medium containing EGTA. Thus, the LTD4-induced increase in [Ca2+] i in Ehrlich cells involves an influx of Ca2+ from the extracellular compartment as well as a release of Ca2+ from intracellular Ins(1,4,5)P3-sensitive stores. The Ca2+ peak times for the LTD4-induced Ca2+ influx and for the LTD4-induced Ca2+ release are recorded in the time range 0.20 to 0.21 min in four out of five experiments and in the time range 0.34 to 0.35 min in six out of eight experiments, respectively. Stimulation with LTD4 also induces a transient increase in Ins(1,4,5)P3 generation in the Ehrlich cells, and the Ins(1,4,5)P3 peak time is recorded in the time range 0.27 to 0.30 min. Thus, the Ins(1,4,5)P3 content seems to increase before the LTD4-induced Ca2+ release from the intracellular stores but after the LTD4-induced Ca2+ influx. Inhibition of phospholipase C by preincubation with U73122 abolishes the LTD4-induced increase in Ins(1,4,5)P3 as well as the LTD4-induced increase in [Ca2+] i , indicating that a U73122-sensitive phospholipase C is involved in the LTD4-induced Ca2+ mobilization in Ehrlich cells. The LTD4-induced Ca2+ influx is insensitive to verapamil, gadolinium and SK&F 96365, suggesting that the LTD4-activated Ca2+ channel in Ehrlich cells is neither voltage gated nor stretch activated and most probably not receptor operated. In conclusion, LTD4 acts in the Ehrlich cells via a specific receptor for LTD4, which upon stimulation initiates an influx of Ca2+, through yet unidentified Ca2+ channels, and an activation of a U73122-sensitive phospholipase C, Ins(1,4,5)P3 formation and finally release of Ca2+ from the intracellular Ins(1,4,5)P3-sensitive stores. Received: 9 February 1996/Revised: 15 August 1996  相似文献   

18.
The pulmonary microvascular responses to leukotrienes B4, C4 and D4 (total dosage of 4 μg/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymp fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow x lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (P ) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased P to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Q̇lym) and lmph-to-plasma protein concentration (L/P) ration in either group. LTD4 increased P and Q̇lymp in both acute and awake sheep; Q̇lym increased without a significant change in the L/P ratio. The LTD4-induced rise in P occurred in association with an increase in plasma thromboxane B2 (Txb2) cocentration. The relativity small increase in Q̇lym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greather pre-capillary constriction with LTC4 because Q̇lym did not change and greater post-capillary constriction with LTD4 because Q̇ increased with the same rise in P .  相似文献   

19.
The purpose of this study was to learn wether a number of Ca2+ antagonists were effective in reducing contractile response of the isolated ileum of the sensitized and normal guinea pig. Contractions of the normal ileum in response to LTD4, acetylcholine, histamine, and potassium chloride were obtained before and after verapamil, diltiazen and papaverine. Ovalbumin-induced contractions of the ovalbumin-sensitized ileum were obtained in the presence of the three Ca2+ antagonists. In the normal ileum, all the Ca2+ antagonists were highly effective in diminishing the contractile responses to LTD4, acetylcholine, histamine and potassium chloride. In the sensitized ileum, ovalbumin-evoked contractions, with subsequent release of a potent contractile mediator (presumably SRS-A), were Ca2+-dependent since verapamil, diltiazem and papaverine caused a concentration-related reduction of contractions. Thus, the influx of extracellular Ca2+ plays a key role in the contractile responses of the normal and sensitized guinea pig ileum when stimulated by various potent agonists acting on specific receptors or on the cell membrane.  相似文献   

20.
Lipoxygenase metabolites have proposed as potential chemical mediators of the bronchial hyperractivity which characterizes asthma (2,6). In addition to the possibility that leukotrienes (LTs) sensitize airways smooth muscle to the contractile actions of other mediators such as histamine (1–3), a number of studies have provided evidence for LT-induced enhancement of bronchoconstriction by a vagal dependent mechanism (4–6). In the present study the effects of exposure of the airway to LTC4 on subsequent responsiveness to histamine have been investigated in both and experiments. LTC4, in a concentration eliciting threshold contractile responses of the isolated trachea (1.7 nM), had no effect on either the EC50 or maximal contractile response to histamine. At a concentration eliciting an approximately EC50 contractile response, LTC4 (10 nM) shifted the histamine concentration-response curve rightwards altering the maximum response. In anaesthetized, mechanically ventilated guinea pigs LTC4 (0.1–0.4 nMole/kg, i.v.) injected 20 s beforehand, failed to alter histamine (9–36 nMole/kg, i.v.)-induced bronchoconstriction whereas, under the same conditions, LTD4 (0.05–0.2 nMole/kg, i.v.) dose-dependently enhanced histamine-induced bronchoconstriction. On the other hand, LTC4 or LTD4 (16 uM, 30 s) aerosols potentiated histamine (9.36 nMole/kg, i.v.) in a concentration-dependent manner (Table). Both LTC4 and LTD4 aerosols enahance airway reactivity to histamine whereas only LTD4 has this action when administered intravenously. Neither LTC4 nor LTD4 (6) enhances the contractile effects of histamine on isolated airways smooth muscle. It is concluded that the broncho-constriction enhancing action of these leukotrienes may be indirectly mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号