首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Landry SJ 《Biochemistry》2003,42(17):4926-4936
The molecular chaperone machine composed of Escherichia coli Hsp70/DnaK and Hsp40/DnaJ binds and releases client proteins in cycles of ATP-dependent protein folding, membrane translocation, disassembly, and degradation. The J-domain of DnaJ simultaneously stimulates ATP hydrolysis in the ATPase domain and capture of the client protein in the peptide-binding domain of DnaK. ATP-dependent binding of DnaJ to DnaK mimics DnaJ-dependent capture of a client protein. The dnaJ mutation that replaces aspartate-35 with asparagine (D35N) in the J-domain causes a defect in binding of DnaJ to DnaK. The dnaK mutation that replaces arginine-167 with alanine (R167A) in the ATPase domain of DnaK(R167A) restores binding of DnaJ(D35N). This genetic interaction was said to be allele-specific because wild-type DnaJ does not bind to DnaK(R167A). The J-domain of DnaJ binds to the ATPase domain of DnaK in its capacity as modulator of DnaK ATPase activity and conformational behavior. Surprisingly, the mutations affect the domainwise interaction in an almost opposite manner. D35N increases the affinity of the J-domain for the ATPase domain. R167A has no affect on the affinity of the ATPase domain for the D35N mutant J-domain, but it reduces the affinity for the wild-type J-domain. Previous amide ((1)H, (15)N) NMR chemical shift perturbation mapping in the J-domain suggested that the ATPase domain binds to J-domain helix II and the flanking loops. In the D35N mutant J-domain, chemical shift perturbations include additional effects at amides in the flexible loop II-III and helix III, which have been proposed to undergo an induced fit conformational change upon binding to DnaK. The integrated magnitudes of chemical shift perturbations for the various J-domain and ATPase domain pairs correlate with the free energies of binding. Thus, the J-domain structure can be described as a dynamic ensemble of conformations that is constrained by binding to the ATPase domain. J-domain helix II bends upon binding to the ATPase domain. D35N increases helix II bending, but less so in combination with R167A in the ATPase domain. Taken together, the results suggest that D35N overstabilizes an induced fit conformational change in loop II-III and helix III that is necessary for the J-domain to couple ATP hydrolysis with a conformational change in DnaK, and R167A destabilizes the induced conformation. Conclusions from this work have implications for understanding mechanisms of protein-protein interaction that are involved in allosteric regulation and genetic suppression.  相似文献   

2.
The Escherichia coli Hsp40 DnaJ uses its J-domain (Jd) to couple ATP hydrolysis and client protein capture in Hsp70 DnaK. Fusion of the Jd to peptide p5 (as in Jdp5) dramatically increases the apparent affinity of the p5 moiety for DnaK in the presence of ATP, and Jdp5 stimulates ATP hydrolysis in DnaK by several orders of magnitude. NMR experiments with [15N]Jdp5 demonstrated that the peptide tethers the Jd to the ATPase domain. Thus, ATP hydrolysis and client protein binding in DnaK are coupled principally through the association of the client with DnaJ. Overexpression of a recombinant Jd was specifically toxic to cells that simultaneously expressed DnaK. No toxicity was observed when overexpressing Jdp5 or mutant Jd or when co-overexpressing the Jd and the nucleotide exchange factor GrpE. The results suggest that the Jd shifts DnaK to a client-bound form by stimulating the DnaK ATPase but only when the Jd is brought to DnaK by a client-Hsp40 complex.  相似文献   

3.
Hsp70 family members together with their Hsp40 cochaperones function as molecular chaperones, using an ATP-controlled cycle of polypeptide binding and release to mediate protein folding. Hsp40 plays a key role in the chaperone reaction by stimulating the ATPase activity and activating the substrate binding of Hsp70. We have explored the interaction between the Escherichia coli Hsp70 family member, DnaK, and its cochaperone partner DnaJ. Our data show that the binding of ATP, subsequent conformational changes in DnaK, and DnaJ-stimulated ATP hydrolysis are all required for the formation of a DnaK-DnaJ complex as monitored by Biacore analysis. In addition, our data imply that the interaction of the J-domain with DnaK depends on the substrate binding state of DnaK.  相似文献   

4.
Most, if not all, of the cellular functions of Hsp70 proteins require the assistance of a DnaJ homologue, which accelerates the weak intrinsic ATPase activity of Hsp70 and serves as a specificity factor by binding and targeting specific polypeptide substrates for Hsp70 action. We have used pre-steady-state kinetics to investigate the interaction of the Escherichia coli DnaJ and DnaK proteins, and the effects of DnaJ on the ATPase reaction of DnaK. DnaJ accelerates hydrolysis of ATP by DnaK to such an extent that ATP binding by DnaK becomes rate-limiting for hydrolysis. At high concentrations of DnaK under single-turnover conditions, the rate-limiting step is a first-order process, apparently a change of DnaK conformation, that accompanies ATP binding and proceeds at 12-15 min-1 at 25 degrees C and 1-1.5 min-1 at 5 degrees C. By prebinding ATP to DnaK and subsequently adding DnaJ, the effects of this slow step may be bypassed, and the maximal rate-enhancement of DnaJ on the hydrolysis step is approximately 15 000-fold at 5 degrees C. The interaction of DnaJ with DnaK.ATP is likely a rapid equilibrium relative to ATP hydrolysis, and is relatively weak, with a KD of approximately 20 microM at 5 degrees C, and weaker still at 25 degrees C. In the presence of saturating DnaJ, the maximal rate of ATP hydrolysis by DnaK is similar to previously reported rates for peptide release from DnaK.ATP. This suggests that when DnaK encounters a DnaJ-bound polypeptide or protein complex, a significant fraction of such events result in ATP hydrolysis by DnaK and concomitant capture of the polypeptide substrate in a tight complex with DnaK.ADP. Furthermore, a broadly applicable kinetic mechanism for DnaJ-mediated specificity of Hsp70 action arises from these observations, in which the specificity arises largely from the acceleration of the hydrolysis step itself, rather than by DnaJ-dependent modulation of the affinity of Hsp70 for substrate polypeptides.  相似文献   

5.
The DnaJ (Hsp40) cochaperone regulates the DnaK (Hsp70) chaperone by accelerating ATP hydrolysis in a cycle closely linked to substrate binding and release. The J-domain, the signature motif of the Hsp40 family, orchestrates interaction with the DnaK ATPase domain. We studied the J-domain by creating 42 mutant E. coli DnaJ variants and examining their phenotypes in various separate in vivo assays, namely, bacterial growth at low and high temperatures, motility, and propagation of bacteriophage lambda. Most mutants studied behaved like wild type in all assays. In addition to the (33)HisProAsp(35) (HPD) tripeptide found in all known functional J-domains, our study uncovered three new single substitution mutations (Y25A, K26A, and F47A) that totally abolish J-domain function. Furthermore, two glycine substitution mutants in an exposed flexible loop (R36G, N37G) showed partial loss of J-domain function alone and complete loss of function as a triple (RNQ-GGG) mutant coupled with the phenotypically silent Q38G. Interestingly, all the essential residues map to a small region on the same solvent-exposed face of the J-domain. Engineered mutations in the corresponding residues of the human Hdj1 J-domain grafted in E. coli DnaJ also resulted in loss of function, suggesting an evolutionarily conserved interaction surface. We propose that these clustered residues impart critical sequence determinants necessary for J-domain catalytic activity and reversible contact interface with the DnaK ATPase domain.  相似文献   

6.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

7.
Hsp70 chaperones assist protein folding through ATP-regulated transient association with substrates. Substrate binding by Hsp70 is controlled by DnaJ co-chaperones which stimulate Hsp70 to hydrolyze ATP and, consequently, to close its substrate binding cavity allowing trapping of substrates. We analyzed the interaction of the Escherichia coli Hsp70 homologue, DnaK, with DnaJ using surface plasmon resonance (SPR) spectroscopy. Resonance signals of complex kinetic characteristics were detected when DnaK was passed over a sensor chip with coupled DnaJ. This interaction was specific as it was not detected with a functionally defective DnaJ mutant protein, DnaJ259, that carries a mutation in the HPD signature motif of the conserved J-domain. Detectable DnaK-DnaJ interaction required ATP hydrolysis by DnaK and was competitively inhibited by chaperone substrates of DnaK. For DnaK mutant proteins with amino acid substitutions in the substrate binding cavity that affect substrate binding, the strength of detected interaction with DnaJ decreased proportionally with increased strength of the substrate binding defects. These findings indicate that the detected response signals resulted from DnaJ and ATP hydrolysis-dependent association of DnaJ as substrate for DnaK. Although not considered as physiologically relevant, this association allowed us to experimentally unravel the mechanism of DnaJ action. Accordingly, DnaJ stimulates ATP hydrolysis only after association of a substrate with the substrate binding cavity of DnaK. Further analysis revealed that this coupling mechanism required the J-domain of DnaJ and was also functional for natural DnaK substrates, and thus is central to the mechanism of action of the DnaK chaperone system.  相似文献   

8.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

9.
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.  相似文献   

10.
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.  相似文献   

11.
DnaJ from Escherichia coli is a Type I Hsp40 that functions as a cochaperone of DnaK (Hsp70), stimulating its ATPase activity and delivering protein substrates. How DnaJ binds protein substrates is still poorly understood. Here we have studied the role of DnaJ G/F-rich domain in binding of several substrates with different conformational properties (folded, partially (un)folded and unfolded). Using partial proteolysis we find that RepE, a folded substrate, contacts a wide DnaJ area that involves part of the G/F-rich region and Zn-binding domain. Deletion of G/F-rich region hampers binding of native RepE and reduced the affinity for partially (un)folded substrates. However, binding of completely unfolded substrates is independent on the G/F-rich region. These data indicate that DnaJ distinguishes the substrate conformation and is able to adapt the use of the G/F-rich region to form stable substrate complexes.  相似文献   

12.
13.
Chesnokova LS  Witt SN 《Biochemistry》2005,44(33):11224-11233
Hsp70 chaperones are heterotropic allosteric systems in which ATP and misfolded or aggregated polypeptides are the activating ligands. To gain insight into the mechanism by which ATP and polypeptides regulate Hsp70 chaperone activity, the effect of a short peptide on the K(M) for ATP was analyzed using the Escherichia coli Hsp70 called DnaK. In the absence of peptide, the K(-P)(M) for ATP is 52 +/- 11 nM, whereas this value jumps to 14.6 +/- 1.6 microM in the presence of saturating peptide. This finding supports a mechanism in which ATP binding drives the chaperone in one direction and peptide binding pushes the chaperone back in the opposite direction (and thus increases K(M)), according to ATP + DnaK.P <==> ATP.DnaK.P <==> ATP.DnaK* + P, where ATP.DnaK.P is an intermediate from which competing ATP hydrolysis occurs (ATP.DnaK.P --> ADP.DnaK.P). We show that this branched mechanism can even explain how DnaK hydrolyzes ATP in the absence of peptide and that the true rate constant for DnaK-mediated ATP hydrolysis (k(hy)) in the absence of peptide may be as high as 0.5 s(-)(1) (rather than 5 x 10(-)(4) s(-)(1) as often stated in the literature). What happens is that a conformational equilibrium outcompetes ATP hydrolysis and effectively reduces the concentration of the intermediate by a factor of a thousand, resulting in the following relation: k(cat) = k(hy)/1000 = 5 x 10(-)(4) s(-)(1). How polypeptide substrates and the co-chaperone DnaJ modulate DnaK to achieve its theoretical maximal rate of ATP hydrolysis, which we suggest is 0.5 s(-)(1), is discussed.  相似文献   

14.
Hsc62, Hsc56, and GrpE,the third Hsp70 chaperone system of Escherichia coli   总被引:2,自引:0,他引:2  
Hsc62 is the third Hsp70 homolog of Escherichia coli, which we found previously. Hsc62 is structurally and biochemically similar to DnaK, but hscC gene encoding Hsc62 did not compensate for the defects in the dnaK-null mutant of E. coli MC4100 strain. We cloned the ybeV gene and purified the gene product named Hsc56, a 55,687-Da protein with a J-domain like sequence. Hsc56 stimulated the ATPase activity of only Hsc62 but not those of the other Hsp70 homologs, DnaK and Hsc66. Hsc56 contains the -His-Pro-Glu- sequence corresponding to the His-Pro-Asp motif in DnaJ, which is indispensable for DnaJ to interact with DnaK. Conversion of -His-Pro-Glu- to -Ala-Ala-Ala- abolished the ability of Hsc56 to stimulate the ATPase activity of Hsc62. GrpE, a nucleotide exchange factor for DnaK, also stimulated the ATPase activity of Hsc62 in the presence of Hsc56. Hsc62-Hsc56-GrpE is probably a new Hsp70 chaperone system of E. coli.  相似文献   

15.
We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding domain (NBD) of an Hsp70 protein. Conformational changes driven by ATP binding and hydrolysis in the N-terminal NBD are believed to allosterically regulate substrate affinity in the C-terminal substrate binding domain. Several crystal structures of Hsc70 NBDs in different nucleotide states have, however, not shown significant structural differences. We have previously reported the NMR assignments of the backbone resonances of the NBD of the bacterial Hsp70 homologue Thermus thermophilus DnaK in the ADP-bound state. In this study we show, by assigning the NBD with the ATP/transition state analogue, ADP.AlFx, bound, that it closely mimics the ATP-bound state. Chemical shift difference mapping of the two nucleotide states identified differences in a cluster of residues at the interface between subdomains 1A and 1B. Further analysis of the spectra revealed that the ATP state exhibited a single conformation, whereas the ADP state was in slow conformational exchange between a form similar to the ATP state and another state unique to the ADP-bound form. A model is proposed of the allosteric mechanism based on the nucleotide state altering the balance of a dynamic equilibrium between the open and closed states. The observed chemical shift perturbations were concentrated in an area close to a previously described J-domain binding channel, confirming the importance of that region in the allosteric mechanism.  相似文献   

16.
Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.  相似文献   

17.
The biological activity of DnaK, the bacterial representative of the Hsp70 protein family, is regulated by the allosteric interaction between its nucleotide and peptide substrate binding domains. Despite the importance of the nucleotide-induced cycling of DnaK between substrate-accepting and releasing states, the heterotropic allosteric mechanism remains as yet undefined. To further characterize this mechanism, the nucleotide-induced absorbance changes in the vibrational spectrum of wild-type DnaK was characterized. To assign the conformation sensitive absorption bands, two deletion mutants (one lacking the C-terminal alpha-helical subdomain and another comprising only the N-terminal ATPase domain), and a single-point DnaK mutant (T199A) with strongly reduced ATPase activity, were investigated by time-resolved infrared difference spectroscopy combined with the use of caged-nucleotides. The results indicate that (1) ATP, but not ADP, binding promotes a conformational change in both subdomains of the peptide binding domain that can be individually resolved; (2) these conformational changes are kinetically coupled, most likely to ensure a decrease in the affinity of DnaK for peptide substrates and a concomitant displacement of the lid away from the peptide binding site that would promote efficient diffusion of the released peptide to the medium; and (3) the alpha-helical subdomain contributes to stabilize the interdomain interface against the thermal challenge and allows bidirectional transmission of the allosteric signal between the ATPase and substrate binding domains at stress temperatures (42 degrees C).  相似文献   

18.
The 70 kDa heat shock proteins (the Hsp70 family) assist refolding of their substrates through ATP-controlled binding. We have analyzed mutants of DnaK, an Hsp70 homolog, altered in key residues of its substrate binding domain. Substrate binding occurs by a dynamic mechanism involving: a hydrophobic pocket for a single residue that is crucial for affinity, a two-layered closing device involving independent action of an alpha-helical lid and an arch, and a superimposed allosteric mechanism of ATP-controlled opening of the substrate binding cavity that operates largely through a beta-structured subdomain. Correlative evidence from mutational analysis suggests that the ADP and ATP states of DnaK differ in the frequency of the conformational changes in the alpha-helical lid and beta-domain that cause opening of the substrate binding cavity. The affinity for substrates, as defined by this mechanism, determines the efficiency of DnaJ-mediated and ATP hydrolysis mediated locking-in of substrates and chaperone activity of DnaK.  相似文献   

19.
DnaK, an Hsp70 molecular chaperone, processes its substrates in an ATP-driven cycle, which is controlled by the co-chaperones DnaJ and GrpE. The kinetic analysis of substrate binding and release has as yet been limited to fluorescence-labeled peptides. Here, we report a comprehensive kinetic analysis of the chaperone action with protein substrates. The kinetic partitioning of the (ATP x DnaK) x substrate complexes between dissociation and conversion into stable (ADP x DnaK) x substrate complexes is determined by DnaJ. In the case of substrates that allow the formation of ternary (ATP x DnaK) x substrate x DnaJ complexes, the cis-effect of DnaJ markedly accelerates ATP hydrolysis. This triage mechanism efficiently selects from the (ATP x DnaK) x substrate complexes those to be processed in the chaperone cycle; at 45 degrees C, the fraction of protein complexes fed into the cycle is 20 times higher than that of peptide complexes. The thermosensor effect of the ADP/ATP exchange factor GrpE retards the release of substrate from the cycle at higher temperatures; the fraction of total DnaK in stable (ADP x DnaK) x substrate complexes is 2 times higher at 45 degrees C than at 25 degrees C. Monitoring the cellular situation by DnaJ as nonnative protein sensor and GrpE as thermosensor thus directly adapts the operational mode of the DnaK system to heat shock conditions.  相似文献   

20.
The 70-kDa heat shock proteins (Hsp70) are essential members of the cellular chaperone machinery that assists protein-folding processes. To perform their functions Hsp70 chaperones toggle between two nucleotide-controlled conformational states. ATP binding to the ATPase domain triggers the transition to the low affinity state of the substrate-binding domain, while substrate binding to the substrate-binding domain in synergism with the action of a J-domain-containing cochaperone stimulates ATP hydrolysis and thereby transition to the high affinity state. Thus, ATPase and substrate-binding domains mutually affect each other through an allosteric control mechanism, the basis of which is largely unknown. In this study we identified two positively charged, surface-exposed residues in the ATPase domain and a negatively charged residue in the linker connecting both domains that are important for interdomain communication. Furthermore, we demonstrate that the linker alone is sufficient to stimulate the ATPase activity, an ability that is lost upon amino acid replacement. The linker therefore is most likely the lever that is wielded by the substrate-binding domain and the cochaperone onto the ATPase domain to induce a conformation favorable for ATP hydrolysis. Based on our results we propose a mechanism of interdomain communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号