首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We quantified the physiological responses of black willow to four soil moisture regimes: no flooding (control, C), continuous flooding (CF), periodic flooding (PF), and periodic drought (PD). Stomatal limitation was one of the factors that led to the reduced photosynthetic capacity in CF cuttings. Under PD, stomatal closure, decreased leaf chlorophyll content, and increased dark fluorescence yield contributed to photosynthetic decline. CF cuttings accumulated the lowest shoot biomass while the final height and root growth were most adversely affected by PD. PF cuttings tended to allocate more photoassimilates to root growth than to shoots.  相似文献   

2.
Black willow (Salix nigra) cuttings are used for streambank stabilization where they are subjected to a range of soil moisture conditions including flooding. Flooding has been shown to adversely impact cutting performance, and improved understanding of natural adaptations to flooding might suggest handling and planting techniques to enhance success. However, data assessing the root aeration in adventitious roots that are developed on cuttings of woody species are scant. In addition, it appears that no data are available regarding aeration of the root system under partially flooded conditions. This experiment was designed to examine the effects of continuous flooding (CF) and partial flooding (PF) on aerenchyma formation and radial oxygen loss (ROL) in black willow cuttings. Photosynthetic and growth responses to these conditions were also investigated. Under laboratory condition, replicated potted cuttings were subjected to three treatments: no flooding (control, C), CF, and PF. Water was maintained above the soil surface in CF and at 10 cm depth in PF. Results indicated that after the 28-d treatments, root porosity ranged between 28.6% and 33.0% for the CF and C plants but was greater for the PF plants (39.2% for the drained and 37.2% for the flooded portions). A similar response pattern was found for ROL. In addition, CF treatment led to decreases in final root biomass and root/shoot ratio. Neither CF nor PF had any detectable adverse effects on plant gas exchange or photosystem II functioning. Our results indicated that S. nigra cuttings exhibited avoidance mechanisms in response to flooding, especially the partially flooded condition which is the most common occurrence in riparian systems.  相似文献   

3.
通过设置对照(CK)、连续性水淹(CF)和间歇性水淹(PF)3个水分处理,模拟三峡库区库岸带土壤水分变化,研究乡土树种枫杨当年实生幼苗的生理生态适应机制.结果表明: 不同水分处理均显著影响枫杨幼苗的光合作用、生物量积累和生长.与CK相比,CF和PF组枫杨幼苗除胞间CO2浓度升高,净光合速率(Pn)、气孔导度(gs)均显著降低.其变化趋势是枫杨幼苗的Pn、gs在试验初期下降,然后逐渐恢复或趋于稳定.随着处理时间的延长,CF和PF组枫杨幼苗的总生物量、根生物量、茎生物量、叶生物量、株高和地径均呈现上升趋势.CF和PF组的总生物量、根生物量、叶生物量和株高,以及PF组的茎生物量均显著低于CK,而CF组的茎生物量与CK无显著差异,其地径还高于CK.枫杨幼苗具有耐受水湿而不耐水淹-干旱交替的生理生态特征.  相似文献   

4.
Y. Yang  C. Li 《Photosynthetica》2016,54(1):120-129
To uncover adaptation capacities of two flooding-tolerant plant species, Pterocarya stenoptera (a native species) and Pinus elliottii (an exotic species from southeastern USA), to alternating submergence and drought, we investigated their physiological and growth responses to water stress. Water treatments, including control, continuous flooding (CF), and periodic flooding and drought (PF), were applied to seedlings in order to simulate water level fluctuation in the hydrofluctuation zone of the Three Gorges Reservoir Region. Results showed that net photosynthetic rate (PN), stomatal conductance, and intrinsic water-use efficiency of both plant species were negatively affected under CF and PF compared with the corresponding controls. The PN of both species under PF was comparable to that under CF. At the end of the experiment, the ratio of intercellular to ambient CO2 concentration was not statistically different between water treatments, while that of P. elliottii was significantly higher than that of P. stenoptera. Although P. stenoptera formed lenticels under flooding conditions, P. elliottii seedlings allocated more mass to leaves and increased the relative growth rate of height to enhance the photosynthetic efficiency. Our results illustrated that P. stenoptera and P. elliottii seedlings developed different adaptive strategies in response to flooding, both CF and PF. Therefore, both P. stenoptera and P. elliottii are promising candidates for the vegetation reconstruction of the riparian zones in the Three Gorges Reservoir Region.  相似文献   

5.
《Acta Oecologica》2004,25(1-2):17-22
Both waterlogging and water deficiency are major environmental factors affecting plant growth and functioning in many wetland and floodplain ecosystems across North America. Wetland plants possess various characteristics that enable them to survive and function in the intermittently flooded wetland environments, while their sensitivity to drought has received less attention. The present study quantified the photosynthetic and growth responses of cattail (Typha latifolia), an important species of freshwater wetlands, to a wide range of soil moisture regimes. In addition, changes in the efficiency of photosynthetic apparatus following initiation of the treatments were investigated. Under greenhouse conditions, seedlings were subjected to four soil moisture regimes: (1) drained (control), (2) continuous flooding, (3) periodic flooding, and (4) periodic drought. Results indicated that dark fluorescence yield was increased in response to periodic drought, while it showed decreases under continuous flooding. Net photosynthesis and stomatal conductance were enhanced by continuous flooding and periodic flooding. In contrast, these parameters exhibited reduction under periodic drought. In addition, leaf chlorophyll content was adversely affected by periodic drought. Recovery of net photosynthesis was noted, along with enhanced height growth, in both continuously and periodically flooded plants. Meanwhile, continuous flooding enhanced biomass production while periodic drought led to biomass reduction. Periodic drought also contributed to substantial reduction in root growth compared with shoot growth. Therefore, the combined photosynthetic performance and growth responses of cattail are likely to contribute to the ability of this species to thrive in flooded condition but be susceptive to periodic drought.  相似文献   

6.
This study was the first attempt to extract RNA from black willow (Salix nigra Marshall) that contains numerous secondary products and to examine the photosynthetic gene expression of black willow under a wide range of soil moisture regimes. Black willow cuttings were grown under control, continuous flooding, periodic flooding and periodic drought for 42 d. A modified lithium chloride precipitation method was used for RNA extraction. Results of real-time polymerase chain reaction showed reduced gene expression of oxygen evolving complex, large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenasse and ferredoxin on day 7 as well as the latter two on day 14 in response to flooding. Therefore, decreased expression of these three genes may have contributed to the observed reduced photosynthetic capacity in response to flooding.  相似文献   

7.
Elcan  J.M.  Pezeshki  S.R. 《Photosynthetica》2002,40(2):177-182
Responses of baldcypress (Taxodium distichum) seedlings to soil moisture were studied to test the hypothesis that flooding may lead to seedling's higher susceptibility to drought. Treatments included a well-watered but drained control (C), continuously flooded (CF), control followed by drought (CD), and flooded followed by drought (FD). Gas exchange values revealed no significant effects on net photosynthetic rate (P N) in response to flooding. In contrast, after the onset of drought, P N was significantly reduced in CD and FD plants. Significant growth reductions under mild drought conditions indicated that baldcypress seedlings were drought sensitive. However, comparison of gas exchange rates and growth responses between CD and FD plants indicated that prior flooding had no detectable effect on subsequent sensitivity of baldcypress to drought. These findings explain baldcypress persistence in wetland habitats characterized by periodic flooding and mild drought.  相似文献   

8.
The objective of this study is to determine the effects of substrate moisture and oxygen availability on growth traits of Salix gracilistyla Miquel, which colonizes gravel bars along rivers, the shoot growth schedule, biomass production, and resource allocation were examined under greenhouse conditions. We used four treatments representing a range of substrate moisture and oxygen availability: drought (D), flooding with standing water (FS), flooding with running water (FR), and control without drought or flooding (C). Cuttings in D stopped flushing and had low biomass production, reduced total leaf mass, and small leaves. Under anaerobic conditions, cuttings in FS stopped flushing and had low biomass production, small root biomass, low biomass allocation to roots, shallow roots, high biomass allocation to hypertrophied lenticels, and a few small, thick leaves. Under aerobic conditions, cuttings in FR showed continuous branch elongation and flushing, large biomass production, and large leaf biomass, similar to cuttings in C, in addition to low allocation to hypertrophied lenticels and many large leaves. The growth of cuttings was not inhibited by flooding of the roots throughout the experiment unless the conditions were anaerobic. Thus, cuttings respond to water stress under low moisture conditions by reducing the transpiration area and respond to flooding under low oxygen conditions by high allocation to hypertrophied lenticels and reduced transpiration area. Plasticity in the shoot growth schedule, biomass production, and resource allocation according to moisture conditions and the ability to develop hypertrophied lenticels upon flooding allow S. gracilistyla to colonize sites in which both desiccation and flooding occur.  相似文献   

9.
Aboveground disturbances are common in dynamic riparian environments, and Salix nigra is well adapted with a vigorous resprouting response. Soil moisture stresses are also common, and S. nigra is flood tolerant and drought sensitive. The objective of this study was to quantify nonstructural carbohydrate (NSC) reserves in S. nigra following shoot removal and soil moisture treatments. NSC reserves provide energy for regeneration of shoot tissue until new functional leaves are developed. Three soil moisture treatments: well-watered (W), periodic flooding (F) and drought (D); and three shoot removal treatments: no shoots removed (R0), partial shoot removal (R1), and complete shoot removal (R2) were applied. Plants were harvested when new shoot development was observed (day 13). Statistical significance in the 3 × 3-factorial design was determined in two-factor ANOVA at P < 0.05. Both roots and cuttings were important reservoirs for NSC during resprouting response, with decreases in root (31%) and cutting (14%) biomass in R2 compared to R0. Rapid recovery of photosynthetic surface area (from 15 to 37% of R0) was found in R1. A clear pattern of starch mobilization was found in roots in R0, R1 and R2, with lowest root starch concentration in W, F higher than W, and D higher than F. Shoot starch concentration was lower in F and D compared to W in R0, however, in R1 shoot starch was reduced in W compared to F and D, possibly indicating reduced rates of translocation during soil moisture stress. Evidence of osmotic adjustment was found in roots and shoots with higher total ethanol-soluble carbohydrates (TESC) during soil moisture stress in F and D treatments. Total plant NSC pool was greater in F and D treatments compared to W, and progressively reduced from R0 to R1 to R2. Results indicated negative effects of drought, and to a lesser extent periodic flooding on resprouting response in S. nigra, with implications for reduced survival when exposed to combined stresses of aboveground disturbance and soil moisture.  相似文献   

10.
淹水胁迫下江南牡丹生长及光合特性研究   总被引:1,自引:0,他引:1  
以3年生江南牡丹品种‘凤丹白’为材料,利用盆栽淹水法,设置正常管理、轻度胁迫和重度胁迫3个水平,研究不同淹水胁迫水平对牡丹生长和光合特性的影响。结果表明:经过30 d胁迫后,正常管理、轻度胁迫和重度胁迫下的江南牡丹苗高生长量分别为3.6、1.1和0.73 cm,地径生长量分别为0.21、0.11和0.06 cm,植株总生物量增加量分别为7.0、3.0和2.75 g,淹水胁迫和正常生长差异显著,淹水胁迫严重影响了江南牡丹的生长。同时,在正常管理时,牡丹总叶绿素含量升高,而在淹水胁迫下呈下降趋势。淹水胁迫不同时间根系活力均呈下降趋势且随着胁迫程度的增加下降越大。正常管理下光合速率逐渐增加而胁迫条件下光合速率逐渐降低。同时胁迫条件下,牡丹蒸腾速率、气孔导度均明显下降;轻度淹水胁迫下胞间CO2浓度先升高后降低;而重度胁迫下胞间CO2浓度呈现逐渐升高的变化趋势。淹水胁迫对牡丹根系活力、茎段生长和叶片光合特性影响较大。该研究结果为江南牡丹耐涝胁迫机理研究奠定了理论基础。  相似文献   

11.
One-year-old apple cuttings (Malus pumila var.domestica cv. M26) were grown for 6 months in pot culture with and without inoculum of the VA-mycorrhizal fungus (VAMF)Glomus macrocarpum in soil from a long-term fertilizer field experiment with different P availability (20, 210, and 280 mg CAL-extractable P kg−1). The indigenous VAMF propagule density was reduced by 0.5 Mrad X-irradiation. At harvest, non-inoculated and inoculated plants had similar proportions of root length bearing vesicles. Net dry weight of tree cuttings was significantly increased by inoculation only at 20 mg P kg−1 (+62%). Increasing P availability from 210 to 280 mg P kg−1 led to a 4-week depression of shoot elongation rate only in the inoculated plants. Uptake of P was significantly enhanced by inoculation at 20 and 210 mg P kg−1 (+64 and +12%, respectively). On average, inoculated plants had significantly higher concentrations of Zn in leaves and in roots (+16 and +14%, respectively) and of copper in stems and in roots (+13 and +126%, respectively). Proportion of vesicle bearing root length was significantly correlated with root caloric content. A lipid content of 0.9–4.5% in the root dry matter was attributed to the presence of vesicles corresponding to 1.6–8.2% of total root caloric content. As the control plants were also infected, the beneficial effect of VA-mycorrhiza on nutrient uptake and growth of apple cuttings was underestimated at all P levels. Furthermore, VAM-potential at the lowest P level was not fully exploited as onset of infection was most certainly delayed because of a decreased photosynthetic rate due to P deficiency. Energy drain by VAMF-infection was most probably underestimated considerably, due to, among others, loss of infected root cortex during root growth, sampling and staining. It is concluded that apple cuttings rely on VA-mycorrhizal P-uptake at least in low P soils. In high P soils, apple cuttings may profit predominantly from the uptake of Zn and Cu by the fungal symbionts.  相似文献   

12.
Involvement of cytokinins (CKs) in axillary bud growth of miniature rose was studied. Variation in root formation and axillary bud growth was induced by two indole 3-butyric acid (IBA) pretreatments in two cutting sizes. At six physiological developmental stages around the onset of axillary bud growth, concentrations of CKs were determined in both root and axillary bud tissue by liquid chromatography combined with electrospray tandem mass spectrometry (LC-ESP-MS/MS). Chronological early onset of axillary bud growth occurred in long cuttings pretreated at low IBA concentration, whereas physiological early root formation was associated with long cuttings and high IBA concentration. The CKs zeatin (Z), isopentenyl adenine (iP), zeatin riboside (ZR), dihydrozeatin riboside (DHZR), isopentenyl adenosine (iPA), zeatin O-glucoside (ZOG), zeatin riboside O-glucoside (ZROG), zeatin riboside 5-monophosphate (ZRMP), and isopentenyl adenosine 5-monophosphate (iPAMP) were detected. Concentrations of CKs in axillary bud tissue far exceeded those in root tissue. Indole 3-butyric acid pretreatment influenced the concentration of CKs in axillary bud tissue more than did cutting size, whereas pretreatments only slightly affected CKs in root tissue. The dominant CKs found were iPAMP and ZR. An early and large increase in iPAMP indicated rapid CK biosynthesis in rootless cuttings, suggesting that green parts, including the axillary bud, can synthesize CKs. At the onset of axillary bud growth an increase in concentration of Z, ZR, ZRMP, ZOG, and ZROG was largely coincident with a decrease in iPAMP, iPA, iP, and DHZR. After the onset of axillary bud growth, CK content largely decreased. These results strongly indicate a positive role for CKs in axillary bud growth, and presumably ZRMP, ZR, and Z are active in miniature rose.  相似文献   

13.
不同水分状况稻田的生态生理效应   总被引:1,自引:0,他引:1  
吴志强  林文雄 《生态学杂志》1991,10(5):12-15,45
不同水分状况形成不同生态环境的稻田,直接、间接影响水稻的生长发育。水稻在淹水灌溉条件下生育良好,因淹水土壤生长的水稻,叶子表皮内出现‘硅质气孔’,淹水灌溉使根丛内的空隙度增加,减少根间水流动的阻力,从而增进根吸收矿质元素,促进茎秆生长。但淹水灌溉对稻根系生理功能也有不利影响,  相似文献   

14.
The physiological parameters of microcuttings, namely leaf area, weight (wt) and position on the stock shoot, had significant effects on root vigour, microshoot growth and incidence of shoot tip necrosis (STN) in cultures of grape (Vitis vinifera L.) ‘Arka Neelamani’. Single-node leafy cuttings cultured in MS medium containing 1 μM IAA and 0.1 μM GA3 generally rooted first and subsequently sprouted into a single shoot. Small leafed cuttings exhibited slow root emergence, poor quality roots, early sprouting and weak shoot growth. Large leafed cuttings on the other hand, showed early rooting, vigorous roots, delayed sprouting and healthier shoots. Significant correlations were observed between fresh root wt per plantlet at 1 month in culture and wt of lamina, total wt and leaf area of the cuttings in that order. A significant correlation also existed between wt of roots and height or wt of the sprout that developed. The study suggests that the weight or area of the leaf governed the root growth in a microcutting. STN was observed in some plantlets particularly those derived from large leafed cuttings. Such cuttings showed vigorous roots and delayed but fast sprout growth that ended in STN. Plantlets showing STN had less Ca++ and Mg++ in the shoot tissue than in the shoots of normal plantlets while the roots showed similar Ca++ or higher Mg++ contents. Both had comparable amounts of cytokinins in shoot and root tissues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
施肥对桢楠幼苗光合生理及生长特性的影响   总被引:3,自引:0,他引:3  
贺维  胡庭兴  王锐  钟宇  周贤  敬辽 《西北植物学报》2014,34(6):1187-1197
以1年生桢楠(Phoebe zhennan)幼苗为材料,采用盆栽试验方法,选用氮肥(NF)、复合肥(CF)、有机肥(OF)和混合肥(MF)4种肥料,依据年施氮量为标准设置低(L,0.3g/桶)、中(M,0.6g/桶)、高(H,0.9g/桶)3个施肥水平,于5、7、9月分3次将各肥料平均施入各栽植桶中,考察施肥1个月后桢楠幼苗的形态和光合生理指标,探讨施肥对桢楠幼苗光合生理及生长特性的影响。结果显示:(1)3个施肥水平中,中氮水平(M)对桢楠幼苗的生长促进效应最大;各种肥料中又以CF肥效最差,NF的肥效仅在初期(5~6月)比较明显,施MF的后期(9~10月)养分供应相对不足,而OF能持续地为植株提供养分。(2)施肥可以促进桢楠幼苗叶片叶绿素合成,延长绿叶功能期,并增大净光合速率,其中OF和MF的效果更明显,且有效地提高了幼苗在强光照、高浓度CO2环境下的光合能力。(3)除CF以外,施其他3种肥料均能不同程度地增加桢楠幼苗苗高及地径生长量,且以中氮水平的有机肥(MOF)促进效应最大,其生长量可以达到对照(CK,不施肥)的2倍。综上可知,中氮量有机肥是桢楠幼苗的最佳肥料施用方式。  相似文献   

16.
Menghua Xiao  Yuanyuan Li 《Phyton》2021,90(4):1131-1146
The flooding caused by heavy rainfall in rice irrigation area and the drought caused by the drop of groundwater level are the research focus in the field of irrigation and drainage. Based on the comparative experiment and farmland water level control technology, this paper studied the average soil temperature under different soil layers (TM), the daily temperature change (TDC), the photosynthetic accumulation of single leaf and canopy in rice, and response of photothermal energy to rice root characteristics and growth factors in the paddy field under drought conditions. The results showed that the peak soil temperature under drought treatment was basically synchronous with the conventional irrigation, and the it was delayed by 2–6 h under flooding treatment compared to the drought treatment. Under different water gradients, the temperature decreased according to TL > TCK > TH (L, H and CK represented water flooding, drought and control treatments), and the TDC was opposite. In addition to milky stage, the daily photosynthetic (Pn) accumulation of single leaf and canopy in the flooding and drought treated paddy fields were lower than conventional irrigation, and had a negative impact on leaf area index (LAI) and yield (YR), but did not form fatal damage. The root characteristic factors, RL (root length), RW (root weight), R-CR (root-canopy ratio) were promoted with drought, and YR under light drought was slightly higher than that under heavy drought. There was a strong positive correlation between TM and R-CR in all rice growth stages, while TDC-5 was negatively correlated with effective panicle number, TDC and R-CR in 20 cm soil layer were positively correlated. The correlation between daily Pn accumulation and YR was low, and the correlation between Pn and YR factors was negative or weak positive or negative. The total Pn was positively correlated with yield factors, and the correlation coefficient was higher than that of daily Pn.  相似文献   

17.
A simulated flooding experiment was conducted to evaluate the effects of seasonal flooding on the plant Salix triandroides from the Dongting Lake wetlands in China. The morphology, photosynthetic activity, and anatomy of cuttings in three water conditions (?40 cm, water level 40 cm below soil surface; 0 cm, water level 0 cm at the soil surface; and 40 cm, water level 40 cm above soil surface) and two lights conditions (full sunlight and 10% sunlight) were measured. Plants had a higher survival ratio and biomass accumulation in full sunlight than in 10% sunlight when the water level was ?40 and 0 cm, but there was no difference between these parameters in cuttings grown under the two light conditions in the 40 cm water treatment. In full sunlight, a lower survival ratio and reduced biomass were observed with increasing water level. The same trend was also seen for survival ratio in 10% sunlight. However, there was no difference in biomass among the three water levels in 10% sunlight, except for leaf weight. Branch height, leaf number, adventitious root length, and adventitious root number were different in the three water levels and two light conditions. In water levels of ?40 and 0 cm, plants had lower chlorophyll contents in full sunlight than in 10% sunlight. In full sunlight, there was no difference in chlorophyll content between the water levels, while in 10% sunlight, lower chlorophyll content was observed in ?40 cm than in 0 cm water. Photosynthetic rate, stomatal conductance, and transpiration rate decreased, but water-use efficiency increased in reduced light at all three water levels. Additionally, plants had higher porosity in 40 cm water than in ?40 and 0 cm conditions. Based on the reduced plant growth in the 10% sunlight condition and decreased survival in the 40 cm water level, we conclude that low light significantly decreased plant acclimation to incomplete submergence and that high water levels induced dormancy in the cuttings. Therefore, the height of cuttings used for forestation or reforestation is an important consideration for mitigating the negative effects of seasonal flooding on the survival and growth of S. triandroides in Dongting Lake wetlands.  相似文献   

18.
Summary Results obtained from using root inducing compounds on Taxus species cuttings suggested that rooting could be significantly enhanced by the presence of thiamine. This observation was verified using a root inducing solution containing a set concentration of IBA (0.2%), NAA (0.1%), and supplemented with various concentrations of thiamine. The best rooting response for Taxus cuspidata stem cuttings was found using this solution supplemented with 0.08% thiamine. Rooted cuttings were easily established and developed into vigorous plants. In addition, Taxus brevifolia shoots obtained from tissue cultures via in vitro organogenesis also responded favorably to this 0.08% thiamine supplemented rooting solution.  相似文献   

19.
The maturation of somatic embryos of Sitka spruce [Picea sitchensis (Bong.) Carr.] was found to be highly dependent on the method used to seal plastic Petri dishes. Large numbers of well-formed mature embryos developed if dishes were sealed with PVC cling-film (CF) whilst sealing with Parafilm M (PF) greatly reduced the numbers of embryos forming. Inclusion of potassium permanganate oxidation traps, normally used to deplete the atmospheric ethylene, greatly stimulated somatic embryo maturation under PF sealing. Similarly, traps of adsorption agents (Tenax, activated charcoal or soft white paraffin), capable of removing volatiles from the culture vessel head-space, stimulated somatic embryo maturation under PF sealing although to a lesser extent than the oxidation traps. Incorporation of silver nitrate or 2-chloroethylphosphonic acid (ethephon) in the culture medium indicated that ethylene was not the agent supressing somatic embryo maturation under PF sealing.Abbreviations ABA abscisic acid - CF PVC cling-film - PF Parafilm M  相似文献   

20.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号