首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   

2.
The effect of hydrogen peroxide on the activities of catalase and superoxide dismutase (SOD) in S. cerevisiae has been studied under different experimental conditions: various H2O2 concentrations, time exposures, yeast cell densities and media for stress induction. The yeast treatment with 0.25–0.50 mM H2O2 led to an increase in catalase activity by 2–3-fold. At the same time, hydrogen peroxide caused an elevation by 1.6-fold or no increase in SOD activity dependently on conditions used. This effect was cancelled by cycloheximide, an inhibitor of protein synthesis in eukaryotes. Weak elevation of catalase and SOD activities in cells treated with 0.25–0.50 mM H2O2 found in this study does not correspond to high level of synthesis of the respective enzyme molecules observed earlier by others. It is well known that exposure of microorganisms to low sublethal concentrations of hydrogen peroxide leads to the acquisition of cellular resistance to a subsequent lethal oxidative stress. Hence, it makes possible to suggest that S. cerevisiae cells treated with low sublethal doses of hydrogen peroxide accumulate non-active stress-protectant molecules of catalase and SOD to survive further lethal oxidant concentrations.  相似文献   

3.
Although, several studies have been reported on the effects of oxidants on the structure and function of other molecular chaperones, no reports have been made so far for the chaperonin GroEL. The ability of GroEL to function under oxidative stress was investigated in this report by monitoring the effects of hydrogen peroxide (H(2)O(2)) on the structure and refolding activity of this protein. Using fluorescence spectroscopy and light scattering, we observed that GroEL showed increases in exposed hydrophobic sites and changes in tertiary and quaternary structure. Differential sedimentation, gel electrophoresis, and circular dichroism showed that H(2)O(2) treated GroEL underwent irreversible dissociation into monomers with partial loss of secondary structure. Relative to other proteins, GroEL was found to be highly resistant to oxidative damage. Interestingly, GroEL monomers produced under these conditions can facilitate the reactivation of H(2)O(2)-inactivated rhodanese but not urea-denatured rhodanese. Recovery of approximately 84% active rhodanese was obtained with either native or oxidized GroEL in the absence of GroES or ATP. In comparison, urea-denatured GroEL, BSA and the refolding mixture in the absence of proteins resulted in the recovery of 72, 50, and 49% rhodanese activity, respectively. Previous studies have shown that GroEL monomers can reactivate rhodanese. Here, we show that oxidized monomeric GroEL can reactivate oxidized rhodanese suggesting that GroEL retains the ability to protect proteins during oxidative stress.  相似文献   

4.
The effect of hydrogen peroxide on the survival and activity of antioxidant and associated enzymes in Saccharomyces cerevisiae has been studied. A difference found in the response of wild-type yeast strains treated with hydrogen peroxide was probably related to the different protective effects of antioxidant enzymes in these strains. Exposure of wild-type YPH250 cells to 0.25 mM H2O2 for 30 min increased activities of catalase and superoxide dismutase (SOD) by 3.4-and 2-fold, respectively. However, no activation of catalase in the EG103 strain, as well as of SOD in the YPH98 and EG103 wild strains was detected, which was in parallel to lower survival of these strains under oxidative stress. There is a strong positive correlation (R 2 = 0.95) between activities of catalase and SOD in YPH250 cells treated with different concentrations of hydrogen peroxide. It is conceivable that catalase would protect SOD against inactivation caused by oxidative stress and vice versa. Finally, yeast cell treatment with hydrogen peroxide can lead to either a H2O2-induced increase in activities of antioxidant and associated enzymes or their decrease depending on the H2O2 concentration used or the yeast strain specificity. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1243–1252.  相似文献   

5.
Vitreoscilla becomes resistant to killing by hydrogen peroxide and heat shock when pretreated with nonlethal levels of hydrogen peroxide. The pretreated Vitreoscilla cells (60 microM hydrogen peroxide for 120 min) significantly increased survival of the lethal dose of 20 mM hydrogen peroxide or heat shock (22 degrees C --> 37 degrees C). This indicates the existence of an adaptive response to oxidative stress. However, cells pretreated with 60 microM hydrogen peroxide became nonresistant to a lethal dose of a menadione. This result shows that hydrogen peroxide does not induce cross-resistance to menadione in Vitreoscilla. Furthermore, Vitreoscilla treated with hydrogen peroxide, heat shock, and menadione showed a change in the protein composition, as monitored by a two-dimensional gel analysis. During adaptation to hydrogen peroxide, 12 proteins were induced. Also, 18 new proteins synthesized in response to heat shock were detected by a 2-D gel analysis. The redox-cycling agents also elicited the synthesis of 6 other proteins that were unseen with hydrogen peroxide.  相似文献   

6.
Nuclear oxidative stress damages genomic DNA and may lead to cell death, leading to aging and aging-related disorders. Though it is important to measure the nuclear oxidative stress separately, there are still little examples that applicable to living cells. We have designed and synthesized three bisbenzimide-nitroxides as probes to selectively visualize nuclear redox changes in terms of fluorescence. Compound 3, containing two radical moieties, showed the largest reduction-induced fluorescence change, with good localization in nuclei. RAW264.7 murine macrophage cells were loaded with compound 3 and then treated with 100μM hydrogen peroxide for 5min to show the fluorescence increase. This fluorescence increase was inhibited by pretreatment of 1mM ascorbic acid. These results show that compound 3 was suitable for nuclear-specific redox imaging in murine macrophages.  相似文献   

7.
The inactivation and conformational changes of the bacterial chaperonin GroEL have been studied in SDS solutions with different concentrations. The results show that increasing the SDS concentration caused the intrinsic fluorescence emission intensity to increase and the emission peak to slightly blue-shift, indicating that increasing the SDS concentration can cause the hydrophobic surface to be slightly buried. The changes in the ANS-binding fluorescence with increasing SDS concentration also showed that the GroEL hydrophobic surface decreased. At low SDS concentrations, less than 0.3 mM, the GroEL ATPase activity increased with increasing SDS concentration. Increasing the SDS concentration beyond 0.3 mM caused the GroEL ATPase activity to quickly decrease. At high SDS concentrations, above 0.8 mM, the residual GroEL ATPase activity was less than 10% of the original activity, but the GroEL molecule maintained its native conformation (as indicated by the exposure of buried thiol groups, electrophoresis, and changes of CD spectra). The above results suggest that the conformational changes of the active site result in the inactivation of the ATPase even though the GroEL molecule does not markedly unfold at low SDS concentrations.  相似文献   

8.
《Free radical research》2013,47(5):307-313
A self-referencing and non-invasive Ca2+-sensitive vibrating electrode was used to assess the effects of hydrogen peroxide-induced oxidative challenges on the efflux and influx of calcium across the plasma membrane of single nerve cells cultured from abdominal ganglion of Aplysia californica. A reduced net efflux of Ca2+ from the cell soma occurred immediately after the addition of hydrogen peroxide (0.0025 mM, 0.005 mM or 0.01 mM) to the culture medium, indicating damage to the cell membrane or Ca2+ transport mechanism. There then followed a marked efflux, the extent and duration of which was related to the concentration of hydrogen peroxide used and which may reflect compensatory activity by the Ca2+ regulatory mechanisms in the plasmalemma. No morphological changes were observed in cells challenged with 0.0025 mM hydrogen peroxide and the enhanced rate of Ca2+ efflux rapidly decreased to pre-exposure values. Sustained and enhanced Ca2+ effluxes from those cells exposed to 0.005 mM or 0.01 mM hydrogen peroxide were also consistent with regulatory pumping of Ca2+ out of the cell although contraction and blebbing of neurites and swelling of the soma may indicate that a proportion of the efflux arose from release of Ca2+ from disrupted intracellular stores. The vibrating electrode is a useful additional technique for the study of the pathogenesis of neurological conditions, as ionic fluxes across single nerve cells exposed to physiologically-relevant concentrations of free radicals can be monitored non-invasively for prolonged periods.  相似文献   

9.
Nitric oxide (NO) can regulate osteoblast activities. This study was aimed to evaluate the protective effects of pretreatment with sodium nitroprusside (SNP) as a source of NO on hydrogen peroxide‐induced osteoblast insults and its possible mechanisms. Exposure of human osteosarcoma MG63 cells to hydrogen peroxide significantly increased cellular oxidative stress, but decreased ALP activity and cell viability, inducing cell apoptosis. Pretreatment with 0.3 mM SNP significantly lowered hydrogen peroxide‐induced cell insults. Treatment of human MG63 cells with hydrogen peroxide inhibited Bcl‐2 mRNA and protein production, but pretreatment with 0.3 mM SNP significantly ameliorated such inhibition. Sequentially, hydrogen peroxide decreased the mitochondrial membrane potential, but increased the levels of cytochrome c and caspase‐3 activity. Pretreatment with 0.3 mM SNP significantly lowered such alterations. Exposure to hydrogen peroxide decreased Runx2 mRNA and protein syntheses. However, pretreatment with 0.3 mM SNP significantly lowered the suppressive effects. Runx2 knockdown using RNA interference inhibited Bcl‐2 mRNA production in human MG63 cells. Protection of pretreatment with 0.3 mM SNP against hydrogen peroxide‐induced alterations in ALP activity, caspase‐3 activity, apoptotic cells, and cell viability were also alleviated after administration of Runx2 small interference RNA. Thus, this study shows that pretreatment with 0.3 mM SNP can protect human MG63 cells from hydrogen peroxide‐induced apoptotic insults possibly via Runx2‐involved regulation of bcl‐2 gene expression. J. Cell. Biochem. 108: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
《Free radical research》2013,47(1):845-850
Oxidative stress responses were tested in the unicellular cyanobacterium synechococcus PCC 7942 (R-2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. The extent and time course of oxidative stress were related to the activities of ascorbate peroxidase and catalase. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresse. Catalase activity was inhibited in cells, treated with high H2O2 concentrations, and was not induced under photooxidative stress. Catalase was specifically induced in cells treated with cumene hydroperoxide.

Superoxide dismutase activity increased under conditions generating superoxide, such as high light intensities. The induction of the antioxidative enzymes was light dependent and was inhibited by chloramphenicol.  相似文献   

11.
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H2O2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H2O2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main enzymes involved in the defense against oxidative stress.  相似文献   

12.
Physical developers can increase the visibility of end products of certain histochemical reactions, such as oxidative polymerization of diaminobenzidine and selective binding of complex silver iodide ions to Alzheimer's neurofibrillary changes. Unfortunately, this intensification by silver coating is generally superimposed on a nonspecific staining originating from the argyrophil III reaction, which also takes place when tissue sections are treated with physical developers. The present study reveals that the argyrophil III reaction can be suppressed when tissue sections are treated with certain metal ions and hydrogen peroxide before they are transferred to the physical developer. The selective intensification of Alzheimer's neurofibrillary changes requires a pre-treatment with lanthanum nitrate (10 mM/liter) and 3% hydrogen peroxide for 1 hr. The diaminobenzidine reaction can be selectively intensified when physical development is preceded by consecutive treatments with copper sulfate (10 mM/liter, pH 5, 10 min) and hydrogen peroxide (3%, pH 7, 10 min). In peroxidase histochemistry, this high-grade intensification may help to increase specificity and reduce the threshold of detectability in tracing neurons with horseradish peroxidase or in immunohistochemistry when the peroxidase-antiperoxidase method is used.  相似文献   

13.
The oxidative stress response in Bacillus subtilis   总被引:9,自引:0,他引:9  
Abstract Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10–30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.  相似文献   

14.
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.  相似文献   

15.
Neopterin and the reduced form, 7,8-dihydroneopterin (78NP), are pteridines released from macrophages when stimulated with γ-interferon in vivo. The role of 78NP in inflammatory response is unknown though neopterin has been used clinically as a marker of immune cell activation, due to its very fluorescent nature. Using red blood cells as a cellular model, we demonstrated that micromolar concentrations of 78NP can inhibit or reduce red blood cell haemolysis induced by 2,2′-azobis(amidinopropane)dihydrochloride (AAPH), hydrogen peroxide, or hypochlorite. One hundred μM 78NP prevented HOCl haemolysis using a high HOCl concentration of 5 μmole HOCl/107 RBC. Fifty μM 78NP reduced the haemolysis caused by 2 mM hydrogen peroxide by 39% while the same 78NP concentration completely inhibited haemolysis induced by 2.5 mM AAPH. Lipid peroxidation levels measured as HPLC-TBARS were not affected by addition of 78NP. There was no correlation between lipid oxidation and cell haemolysis suggesting that lipid peroxidation is not essential for haemolysis. Conjugated diene measurements taken after 6 and 12 hour exposure to hydrogen peroxide support the TBARS data. Gel electrophoresis of cell membrane proteins indicated 78NP might inhibit protein damage. Using dityrosine as an indicator of protein damage, we demonstrated 200 μM 78NP reduced dityrosine formation in H2O2/Fe++ treated red blood cell ghosts by 30%. HPLC analysis demonstrated a direct reaction between 78NP and all three oxidants. Two mM hydrogen peroxide oxidised 119 nM of 78NP per min while 1 mM AAPH only oxidised 50 nM 78NP/min suggesting that 78NP inhibition of haemolysis is not due to 78NP scavenging the primary initiating reactants. In contrast, the reaction between HOCl and 78NP was near instant. AAPH and hydrogen peroxide oxidised 78NP to 7,8-dihydroxanthopterin while hypochlorite oxidation produced neopterin. The cellular antioxidant properties of 78NP suggest it may have a role in protecting immune cells from free radical damage during inflammation.  相似文献   

16.
The aim of the study was to evaluate the effect of insulin-like growth factors (IGF1 and IGF2), stem cell factor (SCF) and epidermal growth factor (EGF) on the development of embryos exposed to oxidative stress. C3B6F1 female mice were stimulated with 5 IU of pregnant mare serum gonadotropin and 5 IU of equine chorionic gonadotropin (eCG). Two-cell embryos were flushed out from the fallopian tubes 40 h after eCG administration and mating with DBA males. In each experiment embryos were divided into three groups and cultured in (1) control medium, (2) control medium with 0.1 mM hydrogen peroxide and (3) control medium with hydrogen peroxide and separately with IGF1, IGF2, SCF or EGF in concentrations of 1 ng/ml, 10 ng/ml and 100 ng/ml. Under phase-contrast microscopy, 8-cell and compacted embryos, and early, expanded, hatched and outgrown blastocysts were counted at 24 h. The total blastocyst (TB) and inner cell mass (ICM) cell numbers were established by differential staining. Blastocyst cell viability was examined under fluorescence microscopy. To detect apoptosis, TUNEL was performed and visualized under a laser scanning confocal microscope. Hydrogen peroxide decreased embryo growth, blastocyst rates, blastocyst cell viability as well as TB and ICM counts. The TUNEL reaction revealed significantly more apoptotic cells in oxidative stress conditions. Tested factors revealed a varying extent of protective activity against oxidative stress caused by hydrogen peroxide. In media containing hydrogen peroxide and one of the four tested factors (IGF1, IGF2, SCF or EGF) the embryos developed faster than in media with hydrogen peroxide alone. IGF1, IGF2 and EGF increased both TB and (or) ICM counts in embryos exposed to hydrogen peroxide. All tested factors reduced the number of apoptotic cells (TUNEL) in embryos exposed to hydrogen peroxide.  相似文献   

17.
1,3-Diphenylisobenzofuran (DPBF) has been developed as a selective probe for the detection and quantitative determination of hydrogen peroxide in samples containing different reactive nitrogen and oxygen species (RNOS). DPBF is a fluorescent probe which, for almost 20 years, was believed to react in a highly specific manner toward some reactive oxygen species (ROS) such as singlet oxygen and hydroxy, alkyloxy or alkylperoxy radicals. Under the action of these individuals DPBF has been rapidly transformed to 1,2-dibenzoylbenzene (DBB). In order to check if DPBF can act as a unique indicator of the total amount of different RNOS, as well as oxidative stress caused by an overproduction of these individuals, a series of experiments was carried out, in which DPBF reacted with peroxynitrite anion, superoxide anion, hydrogen peroxide, hypochlorite anion, and anions commonly present under biological conditions, namely nitrite and nitrate. In all cases, except for hydrogen peroxide, the product of the reaction is DBB. Only under the action of H2O2 9-hydroxyanthracen-10(9H)-one (oxanthrone) is formed. This product has been identified with the use of fluorescence spectroscopy, NMR spectroscopy, high performance liquid chromatography coupled with mass spectrometry, infrared spectroscopy, elemental analysis, and cyclic voltammetry (CV). A linear relationship was found between a decrease in the fluorescence intensity of DPBF and the concentration of hydrogen peroxide in the range of concentrations of 0.196–3.941?mM. DPBF responds to hydrogen peroxide in a very specific way with the limits of detection and quantitation of 88 and 122.8?μM, respectively. The kinetics of the reaction between DBBF and H2O2 was also studied.  相似文献   

18.
The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10?mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10?mM irrespective of the toxicant used (either H2O2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.  相似文献   

19.
The chaperonin GroEL of the heat shock protein family from Escherichia coli cells can bind various polypeptides lacking rigid tertiary structure and thus prevent their nonspecific association and provide for acquisition of native conformation. In the present work we studied the interaction of GroEL with six denatured proteins (alpha-lactalbumin, ribonuclease A, egg lysozyme in the presence of dithiothreitol, pepsin, beta-casein, and apocytochrome c) possessing negative or positive total charge at neutral pH values and different in hydrophobicity (affinity for a hydrophobic probe ANS). To prevent the influence of nonspecific association of non-native proteins on their interaction with GroEL and make easier the recording of the complexing, the proteins were covalently attached to BrCN-activated Sepharose. At low ionic strength (lower than 60 mM), tight binding of the negatively charged denatured proteins with GroEL (which is also negatively charged) needed relatively low concentrations (approximately 10 mM) of bivalent cations Mg2+ or Ca2+. At the high ionic strength (approximately 600 mM), a tight complex was produced also in the absence of bivalent cations. In contrast, positively charged denatured proteins tightly interacted with GroEL irrespectively of the presence of bivalent cations and ionic strength of the solution (from 20 to 600 mM). These features of GroEL interaction with positively and negatively charged denatured proteins were confirmed by polarized fluorescence (fluorescence anisotropy). The findings suggest that the affinity of GroEL for denatured proteins can be determined by the balance of hydrophobic and electrostatic interactions.  相似文献   

20.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号