首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissimilatory nitrate reduction by Propionibacterium acnes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH strongly influenced the products of dissimilatory nitrate reduction. Nitrate was principally converted to nitrite at alkaline pH, whereas nitrous oxide was the major product of nitrate reduction when the bacteria were grown at pH 6.0. Growth yields were increased by nitrate in electron acceptor-limited chemostats, where nitrate was reduced to nitrite, showing that dissimilatory nitrate reduction was an energetically favorable process in P. acnes. Nitrate had little effect on the amounts of fermentation products formed, but molar ratios of acetate to propionate were higher in the nitrate chemostats. Low concentrations of nitrite (ca. 0.2 mM) inhibited growth of P. acnes in batch culture. The nitrite was slowly reduced to nitrous oxide, enabling growth to occur, suggesting that denitrification functions as a detoxification mechanism.  相似文献   

2.
3.
Dissimilatory nitrate reduction in Clostridium tertium.   总被引:1,自引:0,他引:1  
Fermentation balance studies were carried out on Clostridium tertium grown with and without nitrate in the medium. Nitrate reduction increased the efficiency of energy produced from glucose by permitting the utilization of additional sites of substrate level phosphorylation. The effect was even more dramatic in C. tertium than in C. perfringens, with increased cell yields of about 30% being observed in the former compared with 20% in the latter. Unlike C. perfringens, C. tertium responded to the presence of nitrate in the medium with an increased growth rate. A slight increase in the Y ATP of these cultures was also observed, and quantitatively, this appeared to be consistent with the prediction of Stouthammer and Bettenhaussen that Y ATP will vary with the growth rate. Thus, C. tertium, like C. perfringens, was able to use nitrate as an electron acceptor in conjunction with its energy metabolism, suggesting that this may be widespread among the nitrate-reducing anaerobes.  相似文献   

4.
Propionibacterium acnes, a common skin organism, is most notably recognized for its role in acne vulgaris. It also causes postoperative and device-related infections and has been associated with a number of other conditions such as sarcoidosis and synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO), although its precise role as a causative agent remains to be determined. Propionibacterium acnes produces a number of virulence factors and is well known for its inflammatory and immunomodulatory properties. Recent publication of the P. acnes genome should provide further insights into the pathogenic capabilities of the organism and potentially lead to the development of new therapies.  相似文献   

5.
6.
The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.  相似文献   

7.
Abstract The electron flow to the dissimilatory nitrate reductase (NRII), and dimethylsulphoxide (DMSO) oxidoreductase in Rhodopseudomonas capsulata strains was studied. Our results support the view that DMSO reduction, like dissimilatory nitrate reduction was linked to the electron transfer chain and probably coupled to energy conservation.  相似文献   

8.
The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.  相似文献   

9.
Nitrate dissimilation in chemostat grown cultures ofClostridium butyricum SS6 has been investigated. Sucrose limited cultures grown on nitrate produced nitrite as the principal end-product of nitrate reduction whilst under nitrate-limiting conditions ammonia accumulated in the spent media. Nitrate reduction was accompanied by the synthesis of a soluble nitrate reductase (123 nmol·NADH oxidised · min-1 · mg protein-1) and in addition, under N-limiting conditions, a soluble nitrite reductase (56 nmol NADH oxidised min-1 · mg protein-1). Corresponding ammonia grown cultures synthesised neither enzyme. Concurrent with the dissimilation of nitrate to nitrite and ammonia cell population densities increased by 18% (C-limitation) and 32% (N-limitation). Spent media analyses of the fermentation products from ammonia and nitrate grown cells showed the accumulation of acetate in nitrate dissimilating cultures. Molar ratios of acetate/butyrate increased by a factor of 5 (C-limitation) to 12 (N-limitation) upon adding nitrate to the growth medium. In C-limited cultures, grown on nitrate, hydrogenase activity was 340 nmol · min-1 · mg protein-1 and under N-limitation this increased to 906 nmol · min-1 · mg protein-1. Since N-limited cultures are electron acceptor limited, the increase in hydrogenase activity enables excess electrons to be spilled by this route.  相似文献   

10.
A 59-year-old male diabetic was admitted with an acute myocardial infarction and had recurrent. Propionibacterium acnes bacteremia. Fifteen months after the initial admission a splenectomy was required for removal of a large splenic abscess caused by P. acnes. Although this organism represents part of the normal skin flora, its presence of blood cultures requires serious evaluation since it may signify clinical disease, not merely contamination of blood cultures by skin flora.  相似文献   

11.
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were considered two alternative pathways of dissimilatory nitrate reduction. In this study, we firstly reported that both denitrification and DNRA occurred in Pseudomonas alcaliphila strain MBR with an electrode as the sole electron donor in a double chamber bio‐electrochemical system (BES). The initial concentration of nitrate appeared as a factor determining the type of nitrate reduction with electrode as the sole electron donor at the same potential (?500 mV). As the initial concentration of nitrate increased, the fraction of nitrate reduced through denitrification also increased. While nitrite (1.38 ± 0.04 mM) was used as electron acceptor instead of nitrate, the electrons recovery via DNRA and denitrification were 43.06 ± 1.02% and 50.51 ± 1.37%, respectively. The electrochemical activities and surface topography of the working electrode catalyzed by strain MBR were evaluated by cyclic voltammetry and scanning electron microscopy. The results suggested that cells of strain MBR were adhered to the electrode, playing the role of electron transfer media for nitrate and nitrite reduction. Thus, for the first time, the results that DNRA and denitrification occurred simultaneously were confirmed by powering the strain with electricity. The study further expanded the range of metabolic reactions and had potential value for the recognization of dissimilatory nitrate reduction in various ecosystems. Biotechnol. Bioeng. 2012; 109: 2904–2910. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
Dissimilatory metabolism of nitrate by the rumen microbiota   总被引:5,自引:0,他引:5  
  相似文献   

14.
细菌硝酸盐异化还原成铵(DNRA)过程能够将河口沉积物中的硝氮转化为氨氮,是河口生态系统中潜在的重要氮循环过程之一。本文介绍DNRA机理与分类,综述河口生态系统中DNRA的地位与影响,并总结河口生态系统中几种重要生态因子对DNRA过程的调控与影响。目前DNRA的机理还有待完善。深入研究各类河口生态系统中环境因子对DNRA的调控与影响机制,并研发新的研究方法,将为我国河口地区的水资源保护和生态治理提供科学依据。  相似文献   

15.
E. MARTIN GRIBBON, J.G. SHOESMITH, W.J. CUNLIFFE AND K.T. HOLLAND. 1994. The effect of oxygen on the in vitro propagation of Propionibacterium acnes was investigated under defined culture conditions. This micro-organism is the predominant bacterial resident within the pilosebaceous follicles of sebum-rich areas of human skin. The organism was grown in continuous culture in defined synthetic medium with glucose as the main carbon-energy source at various air saturation concentrations and in the presence and absence of light. Steady state continuous cultures were achieved at very low oxygen tensions in the presence of light, and at higher levels of oxygen when non-illuminated. Culture biomass yields were higher than those of anaerobic cultures. Bacterial cells were inactivated in the presence of light at high oxygen concentrations because of photosensitization reactions involving excess oxygen and microbial porphyrin species.  相似文献   

16.
We report here a rare case of infection caused by Propionibacterium acnes following trauma surgery: a 36-year-old male, accident victim was admitted to the hospital because of polytrauma. He underwent a long-drawn-out surgical intervention and after a free-muscle transfer using the rectus femoris muscle, signs of inflammation were detected in the affected area. Microbiological examination of the wound revealed the presence of P. acnes as the only etiological agent of this infection. Adequate antibiotic treatment with penicillin had been started right after the positive microbiological result. Our data confirm the pathogenic potential of P. acnes in late post-surgical infections, and suggest a proper therapeutic approach with intravenous antibiotics and surgical removal of the infected tissue.  相似文献   

17.
Abstract TLC glycolipid profiles of several culture collection and clinical strains of Propionibacterium acnes and Propionibacterium propionicum were examined. The former were characterized by weak orcinol-positive minor glycolipids of type g, while the others had mainly strong orcinol-positive major glycolipids of type G. The simple and rapid small scale procedure seemed to be useful for differentiation of these phenotypically similar and genotypically closely related species irrespective of their serotypes.  相似文献   

18.
Of several commercial media tested, trypticase soya both containing 0.4% (w/v) D-sorbitol was superior as a growth medium for the production of extracellular proteinase by Propionibacterium acnes (strain P-37). Extracellular proteinase, production of which was shown to be growth-associated by both batch and continuous culture studies, was partially purified by 70% (NH4)2SO4 saturation. Sephadex G-75 chromatography and ion exchange on DEAE-Sephadex A-50. It was shown to be a heterogeneous mixture of at least three molecular species of enzyme. Proteinase I was inhibited by EDTA (10(-3) mol/l) and PMSF (5 millimol/l) and stimulated by CaCl2 (190% at 10(-3) mol/l). It had a molecular weight of 20 to 30000 and a broad pH optimum from 6.5 to 7.5. Proteinase II was an alkaline proteinase with a molecular weight of 30 to 40000 which was not significantly inhibited by EDTA (10(-2) mol/l) nor stimulated by CaCl2. Proteinase III represented a minor proportion of the recovered proteolytic activity, had a molecular weight of 20 to 30000 and was most active in the alkaline pH range. This enzyme was inhibited by EDTA (10(-4) mol/l) and PMSF (5 millimol/l), and stimulated by CaCl2 (250% at 10(-2) mol/l).  相似文献   

19.
Random amplification of polymorphic DNA (RAPD) was evaluated as a genotypic method for typing clinical strains of Propionibacterium acnes. RAPD can suffer from problems of reproducibility if parameters are not standardised. In this study the reaction conditions were optimised by adjusting template DNA concentration and buffer constituents. All isolates were typeable using the optimised RAPD protocol which was found to be highly discriminatory (Simpson's diversity index, 0.98) and reproducible. Typing of P. acnes by optimised RAPD is an invaluable tool for the epidemiological investigation of P. acnes for which no other widely accepted method currently exists.  相似文献   

20.
Of several commercial media tested, trypticase soya broth containing 0.4% (w/v) D-sorbitol was superior as a growth medium for the production of extracellular proteinase by Propionibacterium acnes (strain P-37). Extracellular proteinase, production of which was shown to be growth-associated by both batch and continuous culture studies, was partially purified by 70% (NH4)2SO4 saturation, Sephadex G-75 chromatography and ion exchange on DEAE-Sephadex A-50. It was shown to be a heterogeneous mixture of at least three molecular species of enzyme. Proteinase I was inhibited by EDTA (10-3 mol/l) and PMSF (5 millimol/l) and stimulated by CaCl2 (190% at 10-3 mol/l). It had a molecular weight of 20 to 30000 and a broad pH optimum from 6.5 to 7.5. Proteinase II was an alkaline proteinase with a molecular weight of 30 to 40000 which was not significantly inhibited by EDTA (10-2 mol/l) nor stimulated by CaCl2. Proteinase III represented a minor proportion of the recovered proteolytic activity, had a molecular weight of 20 to 30000 and was most active in the alkaline pH range. This enzyme was inhibited by EDTA (10-4 mol/l) and PMSF (5 millimol/l), and stimulated by CaCl2 (250% at 10-2 mol/l).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号