首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During early pregnancy in the rat, focal adhesions disassemble in uterine luminal epithelial cells at the time of implantation to facilitate their removal so that the implanting blastocyst can invade into the underlying endometrial decidual cells. This study investigated the effect of ovarian hormones on the distribution and protein expression of two focal adhesion proteins, talin and paxillin, in rat uterine luminal and glandular epithelial cells under various hormone regimes. Talin and paxillin showed a major distributional change between different hormone regimes. Talin and paxillin were highly concentrated along the basal cell surface of uterine luminal epithelial cells in response to oestrogen treatment. However, this prominent staining of talin and paxillin was absent and also a corresponding reduction of paxillin expression was demonstrated in response to progesterone alone or progesterone in combination with oestrogen, which is also observed at the time of implantation. In contrast, the distribution of talin and paxillin in uterine glandular epithelial cells was localised on the basal cell surface and remained unchanged in all hormone regimes. Thus, not all focal adhesions are hormonally dependent in the rat uterus; however, the dynamics of focal adhesion in uterine luminal epithelial cells is tightly regulated by ovarian hormones. In particular, focal adhesion disassembly in uterine luminal epithelial cells, a key component to establish successful implantation, is predominantly under the influence of progesterone.  相似文献   

2.
3.
Lysosomal acid phosphatase was studied at both the light and electron microscope level in the rat uterine luminal and glandular epithelium, at oestrous, late dioestrous and day 6 of pregnancy. At the light-microscopic level lysosomal numbers were quantified and statistically analysed. A morphological study was also carried out on the lysosomes at the electron-microscopic level in the above-mentioned stages. Quantification of lysosomal numbers found day 6 of pregnancy to have a significantly higher lysosomal population in the luminal and glandular epithelium compared to non-pregnant states. At the electron-microscopic level the luminal epithelial lysosomes were frequently observed in an invaginated or vesiculated form whereas these characteristics were rarely observed during late dioestrous and were non-existent during oestrous. Generally, the lysosomes appeared more active in the luminal epithelium at day 6 of pregnancy compared to the non-pregnant state. The findings are discussed in reference to the role of the lysosome at the time of blastocyst implantation.  相似文献   

4.
Expression of the gene for prostaglandin synthase (PGS) was examined in whole endometrial tissue derived from ewes during the oestrous cycle (Days 4-14), on Day 15 of pregnancy and following ovariectomy and treatment with ovarian steroid hormones. Whilst no significant differences were seen in PGS mRNA concentrations analysed by Northern blot analysis in endometrial tissue during the oestrous cycle or in early pregnancy, treatment of ovariectomized (OVX) ewes with oestradiol-17 beta markedly reduced endometrial PGS mRNA concentration. There was no difference in PGS mRNA concentration in ewes treated with progesterone, either alone or in conjunction with oestrogen, from that in OVX controls. In contrast, differences in immunolocalization of PGS observed in uterine tissue from OVX-steroid-treated ewes were much more marked and reflected similar changes seen previously in the immunocytochemical distribution of endometrial PGS during the oestrous cycle. In OVX ewes and those treated with oestrogen, immunocytochemical staining for PGS was seen in stromal cells, but little immunoreactive PGS was located in the endometrial epithelial cells. However, in ewes treated with progesterone alone or with oestrogen plus progesterone, PGS was found in luminal and glandular epithelial cells and in stromal cells. Intensity of immunostaining for PGS in endothelial cells and myometrium did not differ between the treatments. Thus, whilst oestrogen lowers PGS mRNA in the endometrium, presumably in stroma, it may also increase the stability of the enzyme itself in the stromal cells. Although oestradiol-17 beta has no effect on PGS in endometrial epithelium, progesterone stimulates the production of PGS in endometrial epithelial cells without altering the overall abundance of PGS mRNA in the endometrium as a whole. Conceptus-induced changes in PGF-2 alpha release by ovine endometrium would not appear to be mediated via effects on PGS gene expression or protein synthesis.  相似文献   

5.
In preparation for blastocyst implantation, uterine luminal epithelial cells express new cell adhesion molecules on their apical plasma membrane. Since one mechanism epithelial cells employ to regulate membrane polarity is the establishment of specific membrane-cytoskeletal interactions, this study was undertaken to determine if new cytokeratin (CK) intermediate filament assemblies are expressed in endometrial epithelial cells during developmental stages related to blastocyst implantation. Type-specific CK antibodies were used for immunocytochemical and immunoblot analyses of 1) intermediate filament networks of the endometrial epithelium during embryo implantation in rabbits and 2) proliferative and secretory phases of the human menstrual cycle. CK18, a type I CK found in most simple epithelia, was expressed in all luminal and glandular epithelial cells of both the human and rabbit endometrium at all developmental stages analyzed; it was also strongly expressed in trophectoderm of the implanting rabbit blastocyst. In contrast, CK13, another type I cytokeratin, exhibited a regulated expression pattern in luminal, but not glandular, epithelial cells of secretory phase human and peri-implantation stage rabbit endometrium. Furthermore, in the rabbit implantation chambers, CK13 was predominantly localized at the cell apex of luminal epithelial cells, where it assembled into a dense filamentous network. These data suggest that the stage-specific expression of CK13 and a reorganization of the apical intermediate filament cytoskeleton of uterine luminal epithelial cells may play important functions in preparation for the implantation process.  相似文献   

6.
Adhesion molecules play an important part in preparing uterine epithelial cells for receptivity to the implanting embryo, and their rearrangement is crucial in allowing successful implantation. CD43 is an adhesion molecule which has previously been suggested to take part in implantation in mice. Indirect immunofluorescence microscopy localising CD43 was performed on uterine tissue during early pregnancy, and tissue obtained from ovariectomised rats administered with ovarian hormones. Western blotting was performed during early pregnancy on isolated epithelial cells and ovariectomised rats for comparison of the amount of CD43. Immunofluorescence microscopy showed CD43 was situated basally in uterine luminal epithelial cells on day 1 of pregnancy and during oestrogen administration, corresponding to a 95-kDa band of CD43 seen in western blotting. At the time of implantation, and during progesterone or progesterone plus oestrogen combined treatment, CD43 is apical in uterine luminal epithelial cells, resulting in an 85-kDa form of CD43. We suggest that a de-glycosylated form of CD43 moves from basally to apically at the time of implantation, thus facilitating blastocyst attachment to uterine epithelial cells as well as their removal.  相似文献   

7.
Focal adhesions play an important role in promoting embryo invasion; in particular, focal adhesions disassemble at the time of implantation in the rat, facilitating the detachment of the uterine luminal epithelium to allow the embryo to invade the endometrium. This study investigated focal adhesion protein, focal adhesion kinase (FAK) in the rat uterine luminal, and glandular epithelial cells to understand the dynamics of focal adhesions during early pregnancy. FAK undergoes extensive distributional change during early pregnancy, and surprisingly, FAK was not localized at the site of focal adhesions, instead being localized to the site of cell‐to‐cell contact and colocalizing with ZO‐1 on day 1 of pregnancy. At the time of implantation, FAK increases in the apical region of the uterine luminal epithelial cells which was regulated by progesterone. Using an in vitro co‐culture model of rat blastocysts attached to Ishikawa cells, FAK was present apically both in the rat blastocyst and the Ishikawa cells, suggesting a role in attachment andin mediating signal transduction between these two genetically different cell types. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Measurements performed using cell lines or animal tissues have shown that the progesterone receptor (PR) can be induced by estrogens. By use of immunohistochemistry we studied the effects of estrogens on the PR levels in the individual cell types of the target organs uterus and breast. In the uteri of rats, ovariectomy induced a decrease in PR immunoreactivity within the myometrium and outer stromal cell layers. In contrast, in the uterine luminal and glandular epithelium and surrounding stromal cell layers the PR immunoreactivity was significantly enhanced. The same picture emerged when intact rats were treated with the pure estrogen receptor antagonist, ZM 182780 (10 mg/kg/d). Treatment of ovariectomized rats with estradiol resulted in high PR levels in the myometrium and stroma cells but low PR immunoreactivity in the epithelial cells. The ER-mediated repression of the PR immunoreactivity was evidently restricted to the uterine epithelium, as we found that in the epithelial cells of the mammary gland and in cells of N-nitrosomethylurea-induced mammary carcinomas the PR expression was induced by estrogens and was blocked by the pure antiestrogen ZM 182780. These results clearly show that in the rat the activated ER induces diverging effects on PR expression in different cell types even within the same organ.  相似文献   

9.
Uterine epithelial cells transform into a receptive state to adhere to an implanting blastocyst. Part of this transformation includes the apical concentration of cell adhesion molecules at the time of implantation. This study, for the first time, investigates the expression of ICAM1 and fibrinogen‐γ (FGG) in uterine epithelial cells during normal pregnancy, pseudopregnancy and in hormone‐treated rats. An increase (P < 0.05) in ICAM1 was seen at the apical membrane of uterine epithelial cells at the time of implantation compared with day 1 of pregnancy. ICAM1 was also increased (P < 0.05) on day 6 of pseudopregnancy as well as in ovariectomized rats treated with progesterone plus oestrogen. These results show that ICAM1 up‐regulation at the time of implantation is under the control of progesterone, and is not dependent on cytokine release from the blastocyst or in semen. FGG dimerization increased (P < 0.05) on day 6 of pregnancy compared with day 1, and was not up‐regulated in day 6 pseudopregnant animals, suggesting this increase is dependent on a developing blastocyst. The presence of ICAM1 and FGG in the uterine epithelium at the time of implantation in the rat is similar to that seen in lymphocyte–endothelium adhesion, and we suggest a similar mechanism in embryo–uterine epithelium adhesion is utilized. Mol. Reprod. Dev. 78:318–327, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
11.
In utero and lactational exposure to estrogenic agents has been shown to influence morphological and functional development of reproductive tissues. Thus, consumption of dietary phytoestrogens, such as isoflavones, during pregnancy and lactation could influence important periods of development, when the fetus and neonate are more sensitive to estrogen exposure. In this study, reproductive outcomes after developmental exposure to isoflavones were examined in Long-Evans rats maternally exposed to isoflavones via a commercial soy beverage or as the isolated isoflavone, genistein. Most reproductive endpoints examined at birth, weaning, and 2 months of age were not significantly modified in pups of either sex after lactational exposure to soy milk (provided to the dams in place of drinking water) from birth until weaning. However, soy milk exposure induced a significant increase in progesterone receptor (PR) in the uterine glandular epithelium of the 2-month-old pups. In pregnant dams treated with genistein (GEN; 15 mg/kg body weight) by gavage, from Gestational Day 14 through weaning, PR expression in the uterine glandular epithelium from 2-month-old GEN-treated females (postexposure) was also significantly increased. Diethylstilbesterol (DES) also stimulated uterine PR expression only in the glandular but not luminal epithelial cells. However, unlike DES, in utero/lactational exposure to GEN did not increase expression of the proliferation marker, proliferating cell nuclear antigen (PCNA), in the luminal epithelial cells of the 2-month-old rat uteri. These experiments demonstrate that developmental exposure to dietary isoflavones, at levels comparable to the ranges of human exposure, modify expression of the estrogen-regulated PR in the uterus of sexually mature rats weeks after exposure ended. Since the PR is essential for regulating key female reproductive processes, such as uterine proliferation, implantation, and maintenance of pregnancy, its increased expression suggests that soy phytoestrogen exposure during reproductive development may have long-term reproductive health consequences.  相似文献   

12.
Chronically implanted IUDs consisting of silk suture threads induced decidualization in regions of the uterus remote from the suture site in ovariectomized mice treated with a regimen of progesterone and oestrogen which sensitizes the uterus to a decidual stimulus. In these conditions the IUDs did not inhibit decidualization induced by instilled oil, although they did so in pregnant animals of the same strain. Varying the dose of progesterone and oestrogen did not produce conditions in which IUD's inhibited oil-induced decidualization in ovariectomized mice and progesterone treatment did not prevent IUDs inhibiting decidualization in pregnant animals. However, when ovariectomized mice, sensitized as before, were primed repeatedly with oestrogen to simulate continuing oestrous cycles after IUD insertion, the IUD's inhibited oil-induced decidualization. This involved the premature loss of instilled oil from the uterine lumen and was associated with heavy infiltration of leucocytes into the luminal epithelium. Numbers of leucocytes free in the uterine lumen did not appear to be critical. It appears that contact between the oil and the luminal epithelial surface must be sustained for some length of time to induce a decidual reaction; brief contact is not sufficient to trigger the response.  相似文献   

13.
Chu PY  Lee CS  Wright PJ 《Theriogenology》2006,66(6-7):1545-1549
The relationships between changes in plasma progesterone concentrations, degeneration of the luminal epithelium, the occurrence of apoptosis of endometrial cells and endometrial leucocyte populations in the bitch were determined. Mature bitches (n = 15) were euthanized and necropsied when in diestrus (Days 7-75, n = 12) or in anestrus (Days 10, 32 and 53). Degeneration of the luminal epithelium was observed in bitches in late diestrus (Days 38-75, n = 5) when plasma progesterone concentrations were decreasing and in anestrus (Days 10 and 32, n = 2) when plasma progesterone concentrations were < 0.5 ng/mL. Endometrial leucocyte populations increased after degeneration of the luminal epithelium (around Day 42 of diestrus). Apoptosis was mainly observed in the basal glandular epithelial cells and endothelial cells of blood capillaries in all except anestrous bitches. Very few apoptotic cells were found in the superficial glandular epithelial cells and stromal cells. Higher apoptotic indices were detected in the basal glandular epithelium on Days 12-42 of diestrus than at other stages. Therefore, apoptosis of glandular basal epithelial cells occurred mainly in early diestrus, degeneration of cells of the luminal epithelium occurred from mid-diestrus to early anestrus, and the increase in leucocyte numbers may have been a consequence and not a cause of luminal epithelial degeneration.  相似文献   

14.
Previous studies in our laboratory demonstrated the presence of sialomucin complex (SMC)/Muc4 covering the rat uterine luminal epithelium. SMC/Muc4 expression in the uterus is regulated by estrogen and progesterone and lost at the time of receptivity. In contrast to this hormonal regulation at the uterine luminal surface, SMC/Muc4 in the uterine glandular epithelium, oviduct, cervix, and vagina was constitutively expressed at all stages of the estrous cycle. Furthermore, SMC was expressed in the cervix and vagina of the ovariectomized rat, even though it is not found in the uterine luminal epithelium. Both soluble and membrane-bound forms of SMC were present in these tissues. Immunohistochemical analyses showed distinctive localization patterns of SMC in the various tissues during the estrous cycle. Moreover, the previously unreported expression of SMC/Muc4 in the isthmus, ampulla, and infundibulum of the oviduct suggests potential functions in gamete development. These results indicate that SMC/Muc4 is expressed in most tissues of the female reproductive tract, in which it may have multiple functions. However, hormonal regulation appears to be restricted to the uterine luminal epithelium.  相似文献   

15.
Summary The number of intraepithelial lymphocytes (IEL) in the luminal and glandular epithelium of the uterus of virgin rats was analysed in diestrus, proestrus and estrus, and in nulliparous rats on days 5, 7 and 9 of pregnancy. IEL number was calculated either with respect to the number of epithelial cells or to the length of epithelium section. It was found that in diestrus, the number of IEL was, on average, 3.7 per 100 luminal epithelial cells or 6.7 per 1 mm of epithelium section, whereas in proestrus, it decreased to 0.9 and 1.2 IEL, respectively. On day 5 of pregnancy (before implantation) the number of IEL decreased further to 0.45 per 100 luminal epithelial cells or 0.9 per 1 mm of epithelium. On days 7 and 9 of pregnancy, IEL number further decreased in implantation sites, whereas in interimplantation sites it remained at the level calculated for day 5 of pregnancy. The population of uterine IEL consisted of small (82–99%) and large (1–18%) lymphocytes. In all stages of the estrous cycle, IEL occurred with a frequency of 68–87% in the basal region, 8–20% in the middle region and 4–12% in the apical region of the luminal epithelium width.  相似文献   

16.
Estrous cycle in mammals includes marked epithelial changes in reproductive tract, regulated by sex steroid hormones. In the present work we studied the activation of caspases and apoptotic pattern in uterine epithelial cells during proestrus and estrus, and the effect of mating in this process. In addition, we investigated the role of seminal vesicle secretions on apoptosis of uterine epithelia. Apoptotic index was evaluated by TUNEL assay, caspases‐8, ‐9, and ‐3 activation was detected by Western blot and active caspase‐3 expression was detected by immunohistochemistry. Our results show that mating during proestrus and estrus transition induced changes in the apoptotic pattern of uterine luminal epithelium during estrus, characterized by a delay in the onset of apoptosis as compared with that observed in nonmated rats. No differences in the apoptotic pattern in the glandular epithelium between mated and nonmated rats were observed. Seminal vesicle secretions inhibited luminal epithelium apoptosis, while no changes in glandular epithelium apoptosis were observed. We also demonstrate that activation of caspases‐8, ‐9, and ‐3 occurred in both mated and nonmated rats. Active caspase‐3 was detected in the luminal and glandular epithelium in both nonmated and mated rats. The overall results indicate that mating delays but does not prevent the cellular death of the rat uterine luminal epithelium and seminal vesicle secretions are involved in this delay. Finally, the activation of both the mitochondrial and the membrane receptor pathways of cell death are implicated in the molecular mechanism of uterine apoptosis. Mol. Reprod. Dev. 76: 564–572, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Prostaglandins (PGs) appear to have a role in the appearance of the increased uterine vascular permeability and subsequent decidualization observed at implantation in many species. However, the sites of production of these PGs have not been clearly established. To clarify the PG synthetic capacity of the blastocyst and the various types of cells in the uterus at implantation, we have studied the immunohistochemical localization of PG synthase in the rat blastocyst on Days 5 to 7 and uterus on Days 1, 4, 5, 6, and 7 of pregnancy. Labeling of PG synthase was negligible in the uterus on Day 1 of pregnancy. On Day 4, there was increased labeling in the luminal and glandular epithelium, in stromal cells adjacent to the luminal epithelium, and in blood vessels and some leukocytes. PG synthase was detected in the blastocysts on Days 5 to 7, but there was a gradual loss of label in the luminal and glandular epithelial cells during this period. Early differentiating stromal cells adjacent to the luminal epithelium in the implantation site on Day 5 showed bright labeling, whereas peripheral stromal cells were only slightly labeled. By Day 7, the differentiated cells of the primary decidual zone showed little or no label, but cells in the secondary decidual zone were brightly labeled. These results indicate that PG synthase is present in the rat blastocyst and in several kinds of uterine cells, and that its localization in uterine cells changed markedly during the implantation process.  相似文献   

18.
Experiments were conducted using female golden hamsters to identify the presence of nerve growth factor (NGF) and its receptors NTRK1 and TNFRSF1B in the uteri of female animals and regulation on their expression by estrogen and progesterone. NGF and its receptor NTRK1 were immunolocalized to luminal epithelial cells, glandular cells, and stromal cells. TNFRSF1B was immunolocalized in luminal epithelial and glandular cells, with no staining found in stromal cells of the uterine horns of normal cyclic golden hamsters. Strong immunostaining of NGF and its receptors NTRK1 and TNFRSF1B was observed in uteri on the day of proestrus as compared to the other stages of the estrous cycle. Results of immunoblot analysis of NGF revealed that there was a positive correlation between uterine NGF expression and plasma concentrations of estradiol-17beta. To clarify the effects of estrogen and progesterone on NGF, NTRK1, and TNFRSF1B expression, adult female golden hamsters were ovariectomized and treated with estradiol-17beta and/or progesterone. Immunoblot analysis and immunohistochemistry indicated that estradiol-17beta stimulated expression of NGF and its two receptors in the uterus. Treatment with progesterone also increased NGF and NTRK1 expression in the uterus. However, no additive effect of these steroids on expression of NGF and its receptors was observed. Changes in uterine weights induced by estradiol-17beta and/or progesterone showed the same profile with that of NGF, suggesting that a proliferative act of NGF may be involved in uterine growth. These results suggest that NGF may play important roles in action of steroids on uterine function.  相似文献   

19.
During neonatal and juvenile life, mammalian uteri undergo extensive structural and functional changes, including uterine gland differentiation and development. In sheep and mice, inhibition of neonatal uterine gland development induced by progestin treatment led to a permanent aglandular uterine phenotype and adult infertility, suggesting that this strategy might be useful for sterilizing dogs and other companion animals. The goal of this study was to define temporal patterns of adenogenesis (gland development), cell proliferation, and progesterone and estrogen receptor expression in uteri of neonatal and juvenile dogs as a first step toward determining whether neonatal progestin treatments might be a feasible contraceptive approach in this species. Uteri obtained from puppies at postnatal wk 1, 2, 4, 6, or 8 were evaluated histologically and immunostained for MKI67, a marker of cell proliferation, estrogen receptor-1, and progesterone receptor. Adenogenesis was under way at 1 wk of age, as indicated by the presence of nascent glands beginning to bud from the luminal epithelium, and rapid proliferation of both luminal epithelial and stromal cells. By Week 2, glands were clearly identifiable and proliferation of luminal, glandular, and stromal cells was pronounced. At Week 4, increased numbers of endometrial glands were evident penetrating uterine stroma, even as proliferative activity decreased in all cell compartments as compared with Week 2. Whereas gland development was most advanced at Weeks 6 to 8, luminal, glandular, and stromal proliferation was minimal, indicating that the uterus was nearly mitotically quiescent at this age. Both estrogen receptor-1 and progesterone receptor were expressed consistently in uterine stromal and epithelial cells at all ages examined. In summary, canine uterine adenogenesis was underway by 1 wk of age and prepubertal glandular proliferation was essentially complete by Week 6. These results provided information necessary to facilitate development of canine sterilization strategies based on neonatal progestin treatments designed to permanently inhibit uterine gland development and adult fertility.  相似文献   

20.
Hosie M  Adamson M  Penny C 《Theriogenology》2008,69(6):700-713
Clomiphene citrate (CC), a synthetic oestrogen, is often prescribed as a superovulator in treating infertility. Although CC works efficiently, pregnancy rates following CC treatment are approximately 10 times lower than "natural" rates. This study investigates how a dose of 1.25 mg CC given to ovariectomized rats before the implantation priming hormones (a single dose of progesterone for 3 days and a dose of estradiol-17beta on d3, P-P-PE), alters the expression and distribution of alpha-actinin, gelsolin and vinculin. Actin binding proteins show a specific distribution within the uterine epithelium during implantation, linking the actin cytoskeleton to integrin expression on the uterine surface and in this way aiding "adhesiveness" for blastocyst apposition to the uterine epithelium. In this study, immunocytochemistry on frozen uterine sections using mouse monoclonal antibodies against alpha-actinin, gelsolin and vinculin and peroxidase-conjugated secondary antibodies, show that CC, administered before the P-P-PE regimen, down-regulates the expression of vinculin, does not alter the expression of gelsolin and up-regulates alpha-actinin on the uterine apical surface, when compared to P-P-PE treated animals. All three proteins are down-regulated on the apical surface of the luminal epithelium and glands in all groups when compared to pregnant controls. Vinculin was only localized in the basolateral compartment of the uterine epithelial cells in the CC treated groups. By down-regulating these proteins on the uterine surface and up-regulating vinculin on the basolateral membrane of the epithelium, CC may impede adhesion and invasion of blastocysts at implantation. These results may aid the exogenous manipulation of uterine tissue to control fertility and improve assisted reproductive out-comes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号