首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active site of human salivary alpha-amylase is composed of tandem subsites (S3, S2, S1, S1',S2', etc.) geometrically complementary to several glucose residues, and the glycosidic linkage of the substrate is split between S1 and S1'. As a matter of convenience, the subsites to which the non-reducing-end part (glycone) and the reducing-end part (aglycone) of the substrate being hydrolyzed are bound are named the glycone-binding site (S3, S2, S1) and the aglycone-binding site (S1', S2'), respectively. The features of the aglycone-binding site of human salivary alpha-amylase were examined by means of transglycosylation reaction using phenyl alpha-maltoside (GG phi: G-G-phi) and its derivatives (GAG phi: G-AG-phi, GCG phi: G-CG-phi, AGG phi: AG-G-phi, and CGG phi: CG-G-phi) in which one of the glucose residues (G) has been converted to 6-amino-6-deoxy-glucose (AG) or glucuronic acid (CG) residue as the acceptor. A fluorogenic derivative of maltotetraose, p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha-D -glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG4P, FG-G-G-G-P), was used as the substrate. HSA catalyzed both hydrolysis of FG4P to FG3 (FG-G-G) and p-nitrophenyl alpha-glucoside (G-P) and transfer of the FG3 residue of FG4P to the acceptors. Transfer to GAG phi occurred more effectively than to GG phi. Transfers to GCG phi and CGG phi were less than to GG phi and very little transfer to AGG phi occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The mode of action of an alpha-amylase (yHXA) which was the gene product of a newly found human alpha-amylase gene expressed in yeast on synthetic substrates was compared with those of the gene products (yHSA and yHPA) of human salivary and pancreatic alpha-amylase gene in yeast. The substrates used were phenyl alpha-maltopentaoside (G5 phi) and its derivatives in which the CH2OH groups of the non-reducing-end glucose residues were converted to CH2NH2 (AG5 phi), COOH (CG5 phi), or CH2I (IG5 phi). The digests were subjected to HPLC to determine the amounts of products. The HPLC analysis revealed that yHXA and yHSA bound G5 phi to their active sites in similar manners to give the same products, while yHPA hydrolyzed it in a different way. Modifications of the non-reducing-end glucose of G5 phi caused change of the binding mode to the active sites of the enzymes. AG5 phi and CG5 phi were hydrolyzed by the enzymes to give more phenyl alpha-glucoside (G phi) and less phenyl alpha-maltoside (G2 phi), while IG5 phi gave more G2 phi and less G phi, compared with G5 phi. The substrate binding mode of yHXA changed more extensively than that of yHSA. The results suggested that there exists an amino acid replacement between yHXA and yHSA. The amino acid residues replaced are neither acidic nor basic, are located in subsite S3, and interact with the CH2OH residue of the non-reducing-end glucose residue of G5 phi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Five modified moltooligosaccharides, phenyl O-6-amino-6-deoxy-alpha-D- glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyransoide (AG4P), phenyl O-(alpha-D-glucopyranosyluronic acid)-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-d-glucopyran osy l- (1----4)-alpha-D-glucopyranoside (CG4P), phenyl O-6-amino-6-deoxy-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyra nos yl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyranoside (AG5P), phenyl O-(alpha-D-glucopyranosyluronic acid)-(1----4)-O-alpha-D-glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyranoside (CG5P), and phenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-a lph a-D- glucopyranoside (FG4P), were prepared to examine the active site of Taka-amylase A (TAA) [EC 3.2.1.1, Aspergillus oryzae]. Phenyl alpha-maltotetraoside (G4P) was predominantly hydrolyzed by TAA to maltose and phenyl alpha-maltoside (G2P). While G2P, phenyl alpha-glucoside (GP), and phenol were liberated from AG4P in the ratio of 7:63:30. G4P, phenyl alpha-maltotrioside (G3P), G2P, and GP were liberated from G5P in the ratio of 1:20:73:6, but AG5P was almost completely hydrolyzed to modified maltotriose and G2P. On the hydrolysis of CG4P and CG5P, no remarkable change was observed except for a decrease in the relative reaction rates compared with G4P and G5P, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The transglycosylation reaction of the cyclodextrin glycosyltransferase from Bacillus megaterium (No. 5 enzyme) and Bacillus macerans (BMA) were examined. No. 5 enzyme was more efficient in transglycosylation reaction than BMA in the every acceptor employed in the present study. The order of the efficient acceptors for No. 5 enzyme was maltose (G2), glucose (Gl), maltotriose (G3) and sucrose (GF). On the other hand, that found for BMA was Gl, G2, GF and G3. The transglycosylation products to glucose formed by the action of No. 5 enzyme on starch were G2, G3, maltotetraose (G4), maltopentaose (G5), maltohexaose (G6) and maltoheptaose (G7) in the order of their quantities, while, in the case of BMA, they were G2, G3, G5, G7=G4 and G6. The larger transglycosylation products to sucrose formed by the action of No. 5 enzyme on starch were maltosylfructose. On the other hand, that formed by the action of BMA was maltoheptaosylfructose.

It was suggested that cyclodextrin glycosyltransferase could transfer the glucosyl residues to an acceptor directly from starch, as well as through cyclodextrin.  相似文献   

5.
Enzymatic transglycosylation using four possible monodeoxy analogs of p-nitrophenyl alpha-D-glucopyranoside (Glc alpha-O-pNP), modified at the C-2, C-3, C-4, and C-6 positions (2D-, 3D-, 4D-, and 6D-Glc alpha-O-pNP, respectively), as glycosyl donors and six equivalents of ethyl beta-D-thioglucopyranoside (Glc beta-S-Et) as a glycosyl acceptor, to yield the monodeoxy derivatives of glucooligosaccharides were done. The reaction was catalyzed using purified Aspergillus niger alpha-glucosidase in a mixture of 50 mM sodium acetate buffer (pH 4.0)/CH3CN (1:1 v/v) at 37 degrees C. High activity of the enzyme was observed in the reaction between 2D-Glc alpha-O-pNP and Glc beta-S-Et to afford the monodeoxy analogs of ethyl beta-thiomaltoside and ethyl beta-thioisomaltoside that contain a 2-deoxy alpha-D-glucopyranose moiety at their glycon portions, namely ethyl 2-deoxy-alpha-D-arabino-hexopyranosyl-(1,4)-beta-D-thioglucopyranoside and ethyl 2-deoxy-alpha-D-arabino-hexopyranosyl-(1,6)-beta-D-thioglucopyranoside, in 6.72% and 46.6% isolated yields (based on 2D-Glc alpha-O-pNP), respectively. Moreover, from 3D-Glc alpha-O-pNP and Glc beta-S-Et, the enzyme also catalyzed the synthesis of the 3-deoxy analog of ethyl beta-thioisomaltoside that was modified at the glycon alpha-D-glucopyranose moiety, namely ethyl 3-deoxy-alpha-D-ribo-hexopyranosyl-(1,6)-beta-D-thioglucopyranoside, in 23.0% isolated yield (based on 3D-Glc alpha-O-pNP). Products were not obtained from the enzymatic reactions between 4D- or 6D-Glc alpha-O-pNP and Glc beta-S-Et.  相似文献   

6.
The alpha-galactosidase (AGA) from Bifidobacterium adolescentis DSM 20083 has a high transglycosylation activity. The optimal conditions for this activity are pH 8, and 37 degrees C. At high melibiose concentration (600 mM), approximately 64% of the enzyme-substrate encounters resulted in transglycosylation. Examination of the acceptor specificity showed that AGA required a hydroxyl group at C-6 for transglycosylation. Pentoses, hexuronic acids, deoxyhexoses, and alditols did not serve as acceptor molecules. Disaccharides were found to be good acceptors. A putative 3D-structure of the catalytic site of AGA was obtained by homology modeling. Based on this structure and amino acid sequence alignments, site-directed mutagenesis was performed to increase the transglycosylation efficiency of the enzyme, which resulted in four positive mutants. The positive single mutations were combined, resulting in six double mutants. The mutant H497M had an increase in transglycosylation of 16%, whereas most of the single mutations showed an increase of 2%-5% compared to the wild-type AGA. The double mutants G382C-Y500L, and H497M-Y500L had an increase in transglycosylation activity of 10%-16%, compared to the wild-type enzyme, whereas the increase for the other double mutants was low (4%-7%). The results show that with a single mutation (H497M) the transglycosylation efficiency can be increased from 64% to 75% of all enzyme-substrate encounters. Combining successful single mutants in double mutations did not necessarily result in an extra increase in transglycosylation efficiency. The donor and acceptor specificity did not change in the mutants, whereas the thermostability of the mutants with G382C decreased drastically.  相似文献   

7.
The active site of Bacillus macerans cyclodextrin glucanotransferase (CGTase) was examined by use of derivatives of phenyl alpha-maltopentaoside and phenyl alpha-glucoside as the substrates and acceptors, respectively. The active site of this enzyme is considered to be composed of tandem subsites (S4, S3, S2, S1, S1', S2', etc.) geometrically complementary to several glucose residues, and the alpha-1,4-glycosidic linkage of a substrate is split between S1 and S1'. The features of subsites S3 and S4 of the glycon binding site were estimated from the modes of the enzymatic action on phenyl alpha-maltopentaoside (G-G-G-G-G-phi; G, glucose residue; phi, phenyl residue; -, alpha-1,4-glycosidic bond) and its derivatives in which the CH2OH groups of the non-reducing-end glucose residues were converted to CH2I (IG-G-G-G-G-phi; IG, 6-deoxy-6-iodo-D-glucose residue), CH2NH2 (AG-G-G-G-G-phi; AG, 6-amino-6-deoxy-D-glucose residue), or COOH (CG-G-G-G-G-phi; CG, glucuronic acid residue). p-Nitrophenyl alpha-glucopyranoside (G-P; P, p-nitrophenyl residue) was used as an acceptor. HPLC analysis of the digests revealed that the CG residue of CG-G-G-G-G-phi was excluded from subsite S3, while it was accommodated in subsite S4. The Km and Vmax values for CG-G-G-G-G-phi were remarkably larger and smaller, respectively, than those for any other substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The existence of alpha-amylase (HXA) encoded by alpha-amylase gene AMY2B in healthy humans was examined using a fluorogenic substrate, FG5P (FG-G-G-G-G-P: FG, 6-deoxy-6-[(2-pyridyl)amino]-D-glucose residue; G, glucose residue; P, p-nitrophenyl residue; -, alpha-1,4-glycosidic bond). Chromatofocusing of urine from a healthy human was carried out. FG5P was digested with the fractions exhibiting alpha-amylase activity and each digest at an early stage was analyzed by HPLC. FG5P was hydrolyzed to FG3 (FG-G-G) and p-nitrophenyl alpha-maltoside (G-G-P), and to FG4 (FG-G-G-G) and p-nitrophenyl alpha-glucoside (G-P). The molar ratios of FG4 to FG3 (FG4/FG3) in the digests with basic fractions were larger than those in the digests of human pancreatic alpha-amylase (HPA, 1.11) and human salivary alpha-amylase (HSA, 0.51). Considering that the value for the AMY2B gene product with yeast (yHXA) is 1.88, a value of more than 1.11 implies that HXA exists. The amount of HXA was determined after removal of HSA on an anti-human salivary alpha-amylase antibody bound column. The FG4/FG3 values for six urine samples free from HSA were 1.23-1.26. Assuming that the FG4/FG3 value for HXA is the same as that for yHXA, the ratios of HXA and HPA were estimated to be 1:5.4-4.1. The results obtained showed that the AMY2B gene is usually expressed as HXA in healthy humans.  相似文献   

9.
The inactivation of glycosidases by 2-deoxy-2-fluoroglycosides has been shown previously to occur via the accumulation of a covalent 2-deoxy-2-fluoro-alpha-D-glucopyranosyl enzyme intermediate [Withers, S. G., & Street, I. P. (1988) J. Am. Chem. Soc. 110, 8551]. Further characterization of this process with Agrobacterium beta-glucosidase is described, and the range of glycosides engaging in this behavior is examined. Inactivation is shown to be accompanied by the release of a stoichiometric "burst" of aglycon, thereby providing a new class of active site titration agents for glycosidases. The rate of inactivation is shown to be very strongly dependent on the leaving group ability of the aglycon, the slowest inactivator studied (p-nitrophenyl2-deoxy-2-fluoro-beta-D-glucopyranoside) yielding only partial inactivation due to turnover of the intermediate becoming competitive with its formation. Such turnover of the intermediate is shown to be greatly accelerated by transglycosylation to a suitable glycoside bound in the aglycon site, resulting in the release of a disaccharide product which was isolated and characterized. The pH dependences of both the formation and the hydrolysis of the 2-deoxy-2-fluoroglycosyl-enzyme closely resemble those of each step for normal catalysis, indicating that the same catalytic groups are involved in both processes. A model system for the partial "steady-state" inactivation observed previously [Withers, S. G., Rupitz, K., & Street, I. P. (1988) J. Biol. Chem. 263, 7929] with certain other glycosidases was established by incubating the enzyme with an inactivator known to undergo relatively rapid transglycosylation in the presence of various concentrations of a suitable reactivator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Arbutin (Ab, 4-hydroxyphenyl β-glucopyranoside) is a glycosylated hydroquinone known to prevent the formation of melanin by inhibiting tyrosinase. An arbutin-α-glucoside was synthesized by the transglycosylation reaction of amylosucrase (AS) of Deinococcus geothermalis (DGAS) using arbutin and sucrose as an acceptor and a donor, respectively. The maximum yield of the arbutin transglycosylation product was determined to be over 98% with a 1:0.5 molar ratio of donor and acceptor molecules (sucrose and arbutin), in 50 mM sodium citrate buffer pH 7 at 35 °C. TLC and HPLC analyses revealed that only one transglycosylation product was observed, supporting the result that the transglycosylation reaction of DGAS was very specific. The arbutin transglycosylation product was isolated by preparative recycling HPLC. The structural analyses using 13C and 1H NMR proved that the transglycosylated product was 4-hydroxyphenyl β-maltoside (Ab-α-glucoside), in which a glucose molecule was linked to arbutin via an α-(1 → 4)-glycosidic linkage.  相似文献   

11.
Several galactonoamidines were previously identified as very potent competitive inhibitors that exhibit stabilizing hydrophobic interactions of the aglycon in the active site of β-galactosidase (Aspergillus oryzae). To elucidate the contributions of the glycon to the overall inhibition ability of the compounds, three glyconoamidine derivatives with alteration in the glycon at C-2 and C-4 were synthesized and evaluated herein. All amidines are competitive inhibitors of β-galactosidase (Escherichia coli) and show significantly reduced inhibition ability when compared to the parent. The results highlight strong hydrogen-bonding interactions between the hydroxyl group at C-2 of the amidine glycon and the active site of the enzyme. Slightly weaker H-bonds are promoted through the hydroxyl group at C-4. The inhibition constants were determined to be picomolar for the parent galactonoamidine, and nanomolar for the designed derivatives rendering all glyconoamidines very potent inhibitors of glycosidases albeit the derivatized amidines show up to 700-fold lower inhibition activity than the parent.  相似文献   

12.
The action pattern and mechanism of the Taka-amylase A-catalyzed reaction were studied quantitatively and kinetically by product analysis, using a series of maltooligosaccharides from maltotriose (G3) to maltoheptaose (G7) labeled at the reducing end with 14C-glucose. A marked concentration dependency of the product distribution from the end-labeled oligosaccharides was found, Especially with G3 and G4 as substrates. The relative cleavage frequency at the first glycosidic bond counting from the nonreducing end of the substrate increases with increasing substrate concentration. Further product analyses with unlabeled and end-labeled G3 as substrates yielded the following findings: 1) Maltose is produced in much greater yield than glucose from unlabeled G3 at high concentration (73 mM). 2) Maltooligosaccharides higher than the starting substrate were found in the hydrolysate of labeled G3. 3) Nonreducing end-labeled maltose (G-G), which is a specific product of condensation, was found to amount to only about 4% of the total labeled maltose. Based on these findings, it was concluded that transglycosylation plays a significant role in the reaction at high concentrations of G3, although the contribution of condensation cannot be ignored. A new method for evaluating subsite affinities is proposed; it is based on the combination of the kinetic parameter (ko/Km) and the bond-cleavage distribution at a sufficiently low substrate concentration, where transglycosylation and condensation can be ignored. This method was applied to evaluate the subsite affinities of Taka-amylase A. Based on a reaction scheme which involves hydrolysis, transglycosylation and condensation, the time courses of the formation of various products were simulated, using the Runge-Kutta-Gill method. Good agreement with the experimental results was obtained.  相似文献   

13.
A mixture of p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranoside (FG5P) and p-nitrophenyl alpha-D-glucoside (GP) was incubated with cyclomaltodextrin glucanotransferase (CGTase) [EC 2.4.1.19]. Analysis of the digest by HPLC showed that the products were p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG4P) and p-nitrophenyl alpha-D-maltoside (G2P), and no other product could be detected. Based on the reaction, a sensitive method to assay for CGTase was developed.  相似文献   

14.
This study is the first report on the effectiveness and specificity of alpha-acarviosinyl-(1-->4)-alpha-D-glucopyranosyl-(1-->6)-D-glucopyranosylidene-spiro-thiohydantoin (PTS-G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG2CNP) and amylose hydrolysis catalysed by human salivary alpha-amylase (HSA). Synthesis of PTS-G-TH was carried out by transglycosylation using acarbose as donor and glucopyranosylidene-spiro-thiohydantoin (G-TH) as acceptor. This new compound was found to be a much more efficient HSA inhibitor than G-TH. The inhibition is a mixed-noncompetitive type on both substrates and only one molecule of inhibitor binds to the enzyme. Kinetic constants calculated from secondary plots are in micromolar range. Values of K(EI) and K(ESI) are very similar in the presence of GalG2CNP substrate; 0.19 and 0.24 microM, respectively. Significant difference can be found for K(EI) and K(ESI) using amylose as substrate; 8.45 and 0.5 microM, respectively. These values indicate that inhibition is rather uncompetitive than competitive related to amylose hydrolysis.  相似文献   

15.
Beta-D-glycosylamidines, in which a glycon is connected via an N-glycoside linkage with a substituted amidine (aglycon), were synthesized in two steps from the corresponding sugars and served as stable and potent beta-glycosidase inhibitors with high selectivity according to the glycon- and alpha, beta-specificities of the enzymes.  相似文献   

16.
The by-product (3) in the hydration of D-glucal (1) catalyzed by emulsin beta-D-glucosidase has been identified as 1,5-anhydro-2-deoxy-3-O-(2-deoxy-beta-D-arabino-hexopyranosyl)-D-arabino-hex-1-enitol. Two models for the formation of 3 are discussed, involving transfer of a 2-deoxy-D-arabino-hexopyranosyl cation to HO-3 of D-glucal (glycon transfer) and transfer of an allylic D-pseudoglucal cation to HO-1 of 2-deoxy-D-arabino-hexopyranose (aglycan transfer). The enzymic production of 3 is highly regiospecific, which lends support to the second model and implies the presence of a specific binding-site for the aglycon moiety.  相似文献   

17.
Enzymatic synthesis of GlcNAc-terminated poly-N-acetyllactosamine beta-glycosides GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(n)Galbeta1,4GlcNAcbeta-pNP (n=1-4) was demonstrated using a transglycosylation reaction of Escherichia freundii endo-beta-galactosidase. The enzyme catalyzed a transglycosylation reaction on GlcNAcbeta1,3Galbeta1,4GlcNAcbeta-pNP (1), which served both as a donor and an acceptor, and converted 1 into p-nitrophenyl beta-glycosides GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(1)Galbeta1,4GlcNAcbeta-pNP (2), GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(2)Galbeta1,4GlcNAcbeta-pNP (3), GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(3)Galbeta1,4GlcNAcbeta-pNP (4) and GlcNAcbeta1,3(Galbeta1,4GlcNAcbeta1,3)(4)Galbeta1,4GlcNAcbeta-pNP (5). When 2 was used as an initial substrate, it led to the preferential synthesis of nonasaccharide beta-glycoside 4 to heptasaccharide beta-glycoside 3. This suggests that 4 is directly synthesized by transferring the tetrasaccharide unit GlcNAcbeta1,3Galbeta1,4GlcNAcbeta1,3Gal to nonreducing end GlcNAc residue of 2 itself. The efficiency of production of poly-N-acetyllactosamines by E. freundii endo-beta-galactosidase was significantly enhanced by the addition of BSA and by a low-temperature condition. Resulting 2 and 3 were shown to be useful for studying endo-beta-galactosidase-catalyzed hydrolytic and transglycosylation reactions.  相似文献   

18.
Two highly purified cellulases, Ex-1 [exo-type, exo-cellobiohydrolase, EC 3.2.1.91] and En-1 [endo-type, EC 3.2.1.4] obtained from Driselase, a commercial enzyme preparation from Irpex lacteus (Polyporus tulipiferae), were used in this work. Both cellulases produced 14C-cellooligosaccharides such as 14C-G2 and 14C-G3 by transglycosylation when G3, G5, or beta-PNPC was used as a donor and 14C-G1 as an acceptor. However, the transglycosylation activity of Ex-1 was far higher than that of En-1. When Ex-1 or En-1 was incubated with beta-PNPG only, no p-nitrophenol was released, but it was readily released when G3 was added to the reaction mixture. In this reaction, the optimal donor (G3) concentration for Ex-1 was 1.0 mM, and the optimal pH values of Ex-1 were at 2.7 and 3.7 for beta-PNPG and beta-PG as acceptors, respectively, these values being far lower than the ordinary optimal pH values of the cellulase (4.0-5.0).  相似文献   

19.
The disproportionation activity (intermolecular transglycosylation) of cyclomaltodextrin glycosyltransferases (CGTases) from Thermoanaerobacter sp. and Bacillus circulans strain 251 was studied. Using soluble starch as donor, the CGTase from Thermoanaerobacter sp. showed the highest transglycosylation activity with all the malto-oligosaccharides tested as acceptors. At ratios of starch: D-glucose from 2:1 to 1:2 (w/w), the formation of cyclodextrins was completely inhibited, and a homologous series of malto-oligosaccharides (Gn) was produced. The conversion of starch into acceptor products was in the range of 63-79% in 48 h. The degree of polymerisation of malto-oligosaccharides formed could be modulated by the ratio of starch: D-glucose provided; at a ratio of 1:2 (w/w), the reaction was quite selective for the formation of G2-G3.  相似文献   

20.
The acceptor specificity of Streptococcus mutans GS-5 glucosyltransferase-D (GTF-D) was studied, particular the specificity toward non-saccharide compounds. Dihydroxy aromatic compounds like catechol, 4-methylcatechol, and 3-methoxycatechol were glycosylated by GTF-D with a high efficiency. Transglycosylation yields were 65%, 50%, and 75%, respectively, using 40 mM acceptor and 200 mM sucrose as glucosyl donor. 3-Methoxylcatchol was also glycosylated, though at a significantly lower rate. A number of other aromatic compounds such as phenol, 2-hydroxybenzaldehyde, 1,3-dihydroxybenzene, and 1, 2-phenylethanediol were not glycosylated by GTF-D. Consequently GTF-D aromatic acceptors appear to require two adjacent aromatic hydroxyl groups. In order to facilitate the transglycosylation of less water-soluble acceptors the use of various water miscible organic solvents (cosolvents) was studied. The flavonoid catechin was used as a model acceptor. Bis-2-methoxyethyl ether (MEE) was selected as a useful cosolvent. In the presence of 15% (v/v) MEE the specific catechin transglucosylation activity was increased 4-fold due to a 12-fold increase in catechin solubility. MEE (10-30% v/v) could also be used to allow the transglycosylation of catechol, 4-methylcatechol, and 3-methoxycatechol at concentrations (200 mM) otherwise inhibiting GTF-D transglycosylation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号