首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.  相似文献   

2.
3.
RNA silencing plays an important role in development through the action of micro (mi) RNAs that fine tune the expression of a large portion of the genome. But, in plants and insects, it is also a very important player in innate immune responses, especially in antiviral defense. It is now well established that the RNA silencing machinery targets plant as well as insect viruses. While the genetic basis underlying this defense mechanism in these organisms starts being elucidated, much less is known about the possible antiviral role of RNA silencing in mammals. In order to identify siRNAs coming from viruses in infected human cells, small RNAs from cells infected with RNA viruses, such as hepatitis C virus, yellow fever virus or HIV-1, were cloned and sequenced, but no virus-specific siRNAs could be detected. On the contrary, viral small RNAs were found in cells infected by the DNA virus Epstein-Barr. A closer look at these revealed that they were not siRNAs, but rather resembled miRNAs. This finding indicated that, rather than being targeted by RNA silencing, human DNA viruses seem to have evolved their own miRNAs to modulate the expression of host genes. This primary observation has been extended to other members of the herpesvirus family as well as other DNA viruses such as the polyomavirus SV40. Viral miRNAs have the potential to act both in cis to regulate expression of viral genes, or in trans on host genes. There are good indications for the cis mode of action, but the identification of cellular targets of these small viral regulators is only in its infancy.  相似文献   

4.
5.
Effects and side-effects of viral RNA silencing suppressors on short RNAs   总被引:12,自引:0,他引:12  
In eukaryotes, short RNAs play a crucial regulatory role in many processes including development, maintenance of genome stability and antiviral responses. These different but overlapping RNA-guided pathways are collectively termed 'RNA silencing'. To counteract an antiviral RNA silencing response, plant viruses express silencing suppressor proteins. Recent results have shown that silencing suppressors operate by modifying the accumulation and/or activity of short RNAs involved in the antiviral response. Because RNA silencing pathways intersect, silencing suppressors can also inhibit other short-RNA-regulated pathways. Thus, suppressors contribute to viral symptoms. These findings fuel further research to test whether certain symptoms caused by animal viruses are also manifestations of altered RNA regulatory pathways.  相似文献   

6.
7.
In Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro. We showed that RDR6 possesses terminal nucleotidyltransferase activity as well as primer-independent RNA polymerase activity on single-stranded RNAs. We found that RDR6 cannot distinguish RNAs with or without a cap or poly(A) tail. We also demonstrated that RDR6 has strong polymerase activity on single-stranded DNA. All these activities require the conserved catalytic Asp(867) residue. Our findings have important implications on the processes involving RDR6 in vivo and provide new biochemical insights into the mechanisms of RNA silencing in Arabidopsis.  相似文献   

8.
RNA-directed DNA methylation   总被引:29,自引:0,他引:29  
  相似文献   

9.
10.
Quantitative and dynamic analysis of metabolites and signalling molecules is limited by technical challenges in obtaining temporally resolved information at the cellular and compartmental level. Real-time information on signalling and metabolite levels with subcellular granularity can be obtained with the help of genetically encoded FRET (F?rster resonance energy transfer) nanosensors. FRET nanosensors represent powerful tools for gene discovery, and analysis of regulatory networks, for example by screening mutants. However, RNA silencing has impaired our ability to express FRET nanosensors functionally in Arabidopsis plants. This drawback was overcome here by expressing the nanosensors in RNA silencing mutants. However, the use of silencing mutants requires the generation of homozygous lines deficient in RNA silencing as well as the mutation of interest and co-expression of the nanosensor. Here it is shown that dynamic changes in cytosolic glucose levels can readily be quantified in wild-type Arabidopsis plants at early stages of development (7-15 d) before silencing had a major effect on fluorescence intensity. A detailed protocol for screening 10-20 mutant seedlings per day is provided. The detailed imaging protocol provided here is suitable for analysing sugar flux in young wild-type plants as well as mutants affected in sugar signalling, metabolism, or transport using a wide spectrum of FRET nanosensors.  相似文献   

11.
12.
13.
RNA:诱导基因沉默   总被引:2,自引:0,他引:2  
在生物体中,双链RNA(double-strand RNA,dsRNA)裂解后的小RNA可以诱导细胞质和基因组水平外源基因沉默。所谓基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。小RNA能诱导互补信使RNA在转录后降解。RNA沉默是基因组水平的免疫现象,代表了进化过程中原始的基因组对抗外源基因序列表达的保护机制,在动植物进化中起着重要作用,RNA沉默具有抵抗病毒入侵、抑制转座子活动等作用,并调控蛋白编码基因的表达,具有十分诱人的应用前景。  相似文献   

14.
杨莹  陈宇晟  孙宝发  杨运桂 《遗传》2018,40(11):964-976
表观遗传学修饰包括DNA、RNA和蛋白质的化学修饰,基于非序列改变所致基因表达和功能水平变化。近年来,在DNA和蛋白质修饰基础上,可逆RNA甲基化修饰研究引领了第3次表观遗传学修饰研究的浪潮。RNA存在100余种化学修饰,甲基化是最主要的修饰形式。鉴定RNA甲基化修饰酶及研发其转录组水平高通量检测技术,是揭示RNA化学修饰调控基因表达和功能规律的基础。本文主要总结了近年来本课题组与合作团队及国内外同行在RNA甲基化表观转录组学研究中取得的主要前沿进展,包括发现了RNA去甲基酶、甲基转移酶和结合蛋白,揭示RNA甲基化修饰调控RNA加工代谢,及其调控正常生理和异常病理等重要生命进程。这些系列研究成果证明RNA甲基化修饰类似于DNA甲基化,具有可逆性,拓展了RNA甲基化表观转录组学研究新领域,完善了中心法则表观遗传学规律。  相似文献   

15.
Jeon Y  Lee JT 《Cell》2011,146(1):119-133
The long noncoding Xist RNA inactivates one X?chromosome in the female mammal. Current models posit that Xist induces silencing as it spreads along X and recruits Polycomb complexes. However, the mechanisms for Xist loading and spreading are currently unknown. Here, we define the nucleation center for Xist RNA and show that YY1 docks Xist particles onto the X chromosome. YY1 is a "bivalent" protein, capable of binding both RNA and DNA through different sequence motifs. Xist's exclusive attachment to the inactive X is determined by an epigenetically regulated trio of YY1 sites as well as allelic origin. Specific YY1-to-RNA and YY1-to-DNA contacts are required to load Xist particles onto X. YY1 interacts with Xist RNA through Repeat C. We propose that YY1 acts as adaptor between regulatory RNA and chromatin targets.  相似文献   

16.
17.
非编码RNA是一类没有开放阅读框、不能翻译成为蛋自质的RNA分子。在哺乳动物中,它们主要是指微小RNA、小干扰RNA、PIWI互作RNA和其他一些反义转录本等。它们在生物体内广泛存在,通过RNA干扰、基因沉默、基因印迹和DNA甲基化等机制调控着基因的表达。非编码RNA增加了真核细胞调控网络的复杂性,也为科学地解释一些现象提供了新的途径。  相似文献   

18.
MicroRNAs (miRNAs) are an important class of small, noncoding, regulatory RNAs found to be involved in regulating a wide variety of important cellular processes by the sequence-specific inhibition of gene expression. Viruses have evolved a number of mechanisms to take advantage of the regulatory potential of this highly conserved, ubiquitous pathway known as RNA interference (RNAi). This review will focus on the recent efforts to understand the complex relationship between vertebrate viruses and the RNAi pathway, as well as the role of silencing pathways in the inhibition of pathogenic genetic elements, including transposons and retrotransposons.  相似文献   

19.
在生物体中 ,双链RNA (double strandRNA ,dsRNA)裂解后的小RNA可以诱导细胞质和基因组水平外源基因沉默。所谓基因沉默 (genesilencing)是指生物体中特定基因由于种种原因不表达。小RNA能诱导互补信使RNA在转录后降解 ,对于植物 ,可通过同源DNA序列甲基化使转录基因沉默。RNA沉默是基因组水平的免疫现象 ,代表了进化过程中原始的基因组对抗外源基因序列表达的保护机制 ,在动植物进化中起着重要作用 ,RNA沉默具有抵抗病毒入侵、抑制转座子活动、防止自私基因序列的过量增殖等作用 ,并调控蛋白编码基因的表达 ,具有十分诱人的应用前景  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号