首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Male and female germinal cells of the active hermaphroditic gonad of a snail (Helix aspersa Müller) reveal a positive immunoreactivity to some antibodies raised against biologically active peptides related to pre-pro-opiomelanocortin of vertebrates. All but the oldest cells of the different spermatogenetic and oogenetic stages are methionine-enkephalin-immunopositive, whereas only the young oocytes are -MSH- and 17–39 ACTH-positive. Sometimes some male cells show an 1–24 ACTH positivity. Structures other than germinal cells also react with some antibodies: for example, the nurse cells are -MSH-immunoreactive, the nerve fibers surrounding each acinus and the hermaphrodite duct are both 17–39 ACTH and FMRF amide positive.  相似文献   

2.
A detailed study on the structure of the gonad of Monopterus albus was made as a basis for analysis of gonadal steroids in this sex-reversing teleost. Two types of males were identifiedand their existence appeared to be a result of the difference in gonadal ontogeny among the individuals in natural populations. The germinal area of the gonad, the gonadal lamellae, exhibited à zoned nature with regard to the location of the female and male germ cells. Observations suggested that the male germ cells originated from gonia pre-existing in the inner zone of the gonadal lamellae before sex reversal. Natural reversal of sex in this protogynous hermaphrodite was found to be usually a postnuptial event and was always accompanied by loss of ovarian tissue and by development of interstitial (Leydig) cells. In the mesogonial region of the gonadal wall, peculiar mesenchyme cells were found, their significance remained uncertain.  相似文献   

3.
The planarian Dugesia lugubris is a balanced hermaphrodite, meaning that male genetic factors are in equilibrium with female factors. Differentiation of the gonads is controlled by the region in which they develop. According to the classical theory of germ cell formation, these cells stem from neoblasts that are induced to differentiate by factors specific to the gonadal regions, factors presumably due to gradients formed by neurosecretory activity of the cephalic ganglia and longitudinal nerve cords. A more recently proposed theory holds that germ cells in regenerates originate not from neoblasts but from dedifferentiated cells and that characteristics of the gonadal regions are determined by direct interactions of cells here. Results of our experiments with homo- and autoplastic grafst support the classical theory. Prepharyngeal portions grafted onto posterior body portions retained their ability to maintain or induce development of ovaries. Postpharyngeal portions grafted onto anterior portions produced only testes even though the brain developed normally in these regenerates. Under these experimental conditions, gonad regeneration took longer than it does in normal regeneration (i.e., that in which body regions are not displaced).Translated, from the French, by Marianne Klauser and Seth Tyler.  相似文献   

4.
A marine fish cell line from the snout of red spotted grouper Epinephelus akaara, a protogynous hermaphrodite, was established, characterized, and subcultured with more than 60 passages. The grouper snout cell line (GSC) cells multiplied well in Dulbecco’s modified Eagle’s medium (DMEM) medium supplemented with 10% fetal bovine serum. The optimal growth temperature was 25°C, and morphologically the cells were fibroblastic. Chromosome analysis revealed that the GSC cell line has a normal diploid karyotype with . A virus titration study indicated that the cells were susceptible to turbot Scophthalmus Maximus rhabdovirus (SMRV) (108.5 TCID50 ml−1), while the viral titer of frog Rana grylio virus 9807 (RGV9807) reached 103.5 TCID50 ml−1. The infection was confirmed by cytopathic effect (CPE), immunofluorescence, and electron microscopy experiments, which detected the viral particles in the cytoplasm of virus-infected cells, respectively. Further, significant fluorescent signals were observed when the GSC cells were transfected with pEGFP vector DNA, indicating their potential utility for transgenic and genetic manipulation studies.  相似文献   

5.
The gilthead seabream is a protandrous hermaphrodite seasonal breeding teleost with a bisexual gonad that offers an interesting model for studying the testicular regression process that occurs in both seasonal testicular involution and sex change. Insofar as fish reproduction is concerned, little is known about cell renewal and elimination during the reproductive cycle of seasonal breeding teleosts with asynchronous spermatogenesis. We have previously described how acidophilic granulocytes infiltrate the testis during postspawning where, surprisingly, they produce interleukin-1beta, a known growth factor for mammalian spermatogonia, rather than being directly involved in the elimination of degenerative germ cells. In this study, we are able to discriminate between spermatogonia stem cells and primary spermatogonia according to their nuclear and cytoplasmic diameters and location in the germinal epithelium, finding that these two cell types, together with Sertoli cells, proliferate throughout the reproductive cycle with a rate that depends on the reproductive stage. Thus, during spermatogenesis the spermatogonia stem cells, the Sertoli cells, and the developing germ cells (primary spermatogonia, A and B spermatogonia, and spermatocytes) in the germinal compartment, and cells with fibroblast-shaped nuclei in the interstitial tissue proliferate. However, during spawning, the testis shows few proliferating cells. During postspawning, the resumption of proliferation, the occurrence of apoptotic spermatogonia, and the phagocytosis of nonshed spermatozoa by Sertoli cells lead to a reorganization of both the germinal compartment and the interstitial tissue. Finally, the proliferation of spermatogonia increases during resting when, unexpectedly, both oogonia and oocytes also proliferate. This proliferative pattern was correlated with the gonadosomatic index, testicular morphology, and testicular and gonad areas, suggesting that complex mechanisms operate in the regulation of gonocyte proliferation in hermaphrodite fish.  相似文献   

6.
Summary The development of the gonad, from hatching through sexual maturity and oviposition, has been studied in Arion ater rufus and Deroceras reticulatum. At hatching, the gonad is comprised of several acini. These acini are hollow structures, the walls of which are generally one or two cell layers thick. This cell layer consists of intermingled germinal and non-germinal cells. Eventually, each acinus is divided into two compartments (cortical and medullar) by a layer of auxiliary cells.The auxiliary cells appear to differentiate into Sertoli and follicle cells. These three non-germinal cell types appear to form an uninterrupted cell barrier that isolates the female germ cells in the cortex from the male germ cells in the medulla. Thus, although these animals are hermaphroditic, the male and female germinal lines differentiate in physiologically isolated compartments.Supported in part by NSF Traineeship Grant GZ-198.1 and NIH Developmental Biology Training Grant, No. 5-T01-HD00266-01.The author extends his thanks to Professors Alan J. Kohn, Edward C. Roosen-Runge, and W. Siang Hsu for their advice, suggestions, and encouragement.  相似文献   

7.
The ancestry of the cells in the hermaphrodite and male gonadal somatic structures of C. elegans has been traced from the two gonadal somatic progenitor cells (Z1 and Z4) that are present in the newly hatched larvae of both sexes. The lineages of Z1 and Z4 are essentially invariant. In hermaphrodites, they give rise to a symmetrical group of structures consisting of 143 cells, and in males, they give rise to an asymmetrical group of structures consisting of 56 cells. The male gonad can be distinguished from the hermaphrodite gonad soon after the first division of Z1 and Z4. However, the development of Z1 and Z4 in hermaphrodites shares several features in common with their development in males suggesting that the two programs are controlled by similar mechanisms. In the hermaphrodite lineage, a variability in the positions of two cells is correlated with a variability in the lineages of four cells. This variability suggests that cell-cell interaction may play a more significant role in organisms that develop by invariant lineages than has hitherto been considered. None of the somatic structures (e.g., uterus, spermatheca, vas deferens) develops as a clone of a single cell. Instead, cells that arise early in the Z1–Z4 lineage generally contribute descendants to more than one structure, and individual structures consist of descendants of more than one lineage.  相似文献   

8.
Nemerteans possess serially arranged gonads that lie between the midgut pouches. In both sexes the gonads are lined with an epithelium. During maturity, they gain contact to the exterior by a ciliated duct, which is generally assumed to be a derivative of the gonad. Gonad lining and sperm ultrastructure are little known in heteronemerteans, a group of nemerteans belonging to the Anopla, one of the two large nemertean subgroups. Reproduction biology in heteronemertean Lineus viridis allows predicting a modified sperm type, so-called introsperm for this taxon. Nothing is known on the fate of the testes at the end of the reproductive period of this perennial species. In order to test the predictions and to broaden the data base, males of L. viridis were collected at different times of the year. Histological and ultrastructural data show that the gonad wall is lined with different aciliated endothelial cells and germ cells, while the gonoduct is formed by densely ciliated cells. The testes are completely filled with sperm cells during maturity; there is no hint at ongoing spermiogenesis at this time. The sperm consists of head, midpiece and tail. Externally, head and midpiece cannot be discriminated. The acrosome is cup-shaped and lies anterior to the nucleus which contains 6–8 lateral ridges. Three long mitochondria mark the midpiece. They line the posterior section of the nucleus and extend up to the level of the ciliary basal structures. The sperm morphology corroborates the predictions derived from the mode of reproduction. At the end of the reproductive period the male gonads change cellular composition, while the gonoduct degenerates. Provided that both sexes show the same growth rate, male offspring acquire sexual maturity earlier than female offspring, since L. viridis males are always smaller than the females. In contrast to the males, females keep their gonads and gonoducts during most time of the year. Since large males were never found within the studied population, these data indicate that L. viridis might be a consecutive hermaphrodite.  相似文献   

9.
10.
Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell–GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell–GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.  相似文献   

11.
The temperature-sensitive sex transformer tra-2 (b202) II of the nematode Caenorhabditis elegans causes the transformation of genotypically hermaphrodite worms into phenotypic males and sterile intersexes at restrictive temperature. In this note, we show that the entire gonad structure is transformed and that oocyte development is autonomous of the form of the gonad and of the presence of a cellular sheath. Four oocyte-specific proteins are present in male intersexes that produce oocytes but are lacking in transformed males and hermaphrodite intersexes that do not produce oocytes.  相似文献   

12.
Understanding how stem cells are maintained in their microenvironment (the niche) is vital for their application in regenerative medicine. Studies of Drosophila male germline stem cells (GSCs) have served as a paradigm in niche-stem cell biology. It is known that the BMP and JAK-STAT pathways are necessary for the maintenance of GSCs in the testis (Kawase et al., 2004; Kiger et al., 2001; Schulz et al., 2004; Shivdasani and Ingham, 2003; Tulina and Matunis, 2001). However, our recent work strongly suggests that BMP signaling is the primary pathway leading to GSC self-renewal (Leatherman and DiNardo, 2010). Here we show that magu controls GSC maintenance by modulating the BMP pathway. We found that magu was specifically expressed from hub cells, and accumulated at the testis tip. Testes from magu mutants exhibited a reduced number of GSCs, yet maintained a normal population of somatic stem cells and hub cells. Additionally, BMP pathway activity was reduced, whereas JAK-STAT activation was retained in mutant testes. Finally, GSC loss caused by the magu mutation could be suppressed by overactivating the BMP pathway in the germline.  相似文献   

13.
The light microscopic structure of the testis and genital duct system of the freshwater stingray Himantura signifer was observed. The testis is composed of lobes having numerous spermatocysts in a dorsoventral zonated arrangement. The germinal papilla at the middorsal surface of the testicular lobe is the origin site of spermatocyst development, where mesenchymal-like cells are predominantly found. The association of a Sertoli cell precursor with a spermatogonium marks the onset of spermatocyst formation and development. The newly formed spermatocysts at the dorsal end of the germinal zone replace the older ones, which are sequentially moved to the ventral side and are termed spermatogonial, spermatocyte, spermatid, spermatozoal, and degenerate zones. In the degenerate zone, the spermatocysts deteriorate after releasing the spermatozoa into the intratesticular duct, where they are further transported through the extratesticular duct system and finally stored at the seminal vesicle. The epithelial lining of the genital duct is a pseudostratified ciliated columnar with no muscular layer underneath; thus, sperm are conveyed through ciliary activity. The interesting features of the present study are the finding of mesenchymal-like cells in the germinal papilla and the nonaggregated formation of sperm in the seminal vesicle.  相似文献   

14.
In wild-type Caenorhabditis elegans, the hermaphrodite gonad is a symmetrical structure, whereas the male gonad is asymmetric. Two cellular processes are critical for the generation of these sexually dimorphic gonadal shapes during early larval development. First, regulatory "leader" cells that control tube extension and gonadal shape are generated. Second, the somatic gonadal precursor cells migrate and become rearranged to establish the adult pattern. In this paper, we introduce sys-1, a gene required for early organization of the hermaphrodite, but not the male, gonad. The sys-1(q544) allele behaves genetically as a strong loss-of-function mutant and putative null. All hermaphrodites that are homozygous for sys-1(q544) possess a grossly malformed gonad and are sterile; in contrast, sys-1(q544) males exhibit much later and only partially penetrant gonadal defects. The sys-1(q544) hermaphrodites exhibit two striking early gonadal defects. First, the cell lineages of Z1 and Z4, the somatic gonadal progenitor cells, produce extra cells during L2, but the regulatory cells that control gonadal shape are not generated. Second, somatic gonadal precursor cells do not cluster centrally during late L2, and the somatic gonadal primordium typical of hermaphrodites is not established. In contrast, the early male gonadal lineage is asymmetric as normal, the somatic gonadal primordium typical of males is established correctly, and the male adult gonadal structures can be normal. We conclude that the primary role of sys-1 is to establish the shape and polarity of the hermaphrodite gonad.  相似文献   

15.
A fundamental yet unexplored question in stem cell biology is how the fate of tissue stem cells is initially determined during development. In Drosophila, germline stem cells (GSCs) descend from a subset of primordial germ cells (PGCs) at the onset of oogenesis. GSC determination may occur at the onset of oogenesis when a subset of PGCs is induced to become GSCs by contacting niche cells. Alternatively, the GSC fate could be predetermined for a subset of PGCs before oogenesis, due to either their interaction with specific somatic cells in the embryonic/larval gonads, or their inherently heterogeneous potential in becoming GSCs, or both. Here, we show that anterior somatic cells in the embryonic gonad already differ from posterior somatic cells and are likely to be the precursors of niche cells in the adult ovary. Furthermore, only pole cells in the anterior half of the embryonic gonad give rise to the PGCs that frequently acquire contact with nascent niche cells in the late larval ovary. Eventually, only these contacting PGCs become GSCs, whereas non-contacting PGCs directly differentiate into cystoblasts. The strong preference of these 'anterior PGCs' towards contacting niche cells does not require DE-cadherin-mediated adhesion and is not correlated with either orientation or rate of their divisions. These data suggest that the GSC fate is predetermined before oogenesis. The predetermination probably involves soma/pole-cell interaction in the anterior half of the embryonic gonad, followed by an active homing mechanism during PGC proliferation to maintain the contact between the 'anterior PGCs' and anterior somatic cells.  相似文献   

16.
Summary Previous light-microscopic and ultra-immunohistochemical tracer studies revealed the existence of an independent local immune response of the simian oral mucosa. This local response is attributed to the presence of minor salivary gland (MSG) duct-related lymphoid tissue. Semithin sections from a total of 263 Epon-embedded tissue blocks from the labial and buccal mucosae of seven monkeys, Macaca fascicularis, were analysed light-microscopically, and 10 suitable MSG duct/follicle assemblies were investigated ultrastructurally. These duct/follicle assemblies include follicular and parafollicular compartments with distinct fine-structural elements. The follicular area or germinal centre contains numerous small and large lymphoid cells, mitotic figures, plasmablasts, macrophages, and cells resembling the follicular dendritic cells with distinct desmosomal junctions. The parafollicular area, which includes the heavily infiltrated duct wall, contains numerous small lymphocytes, T-lymphoblasts, plasma cells and reticular cells resembling fibroblasts. A distinct feature of this compartment is the presence of high endothelial venules (HEV). The presence of HEV and numerous blast cells, resembling blast-forming T-lymphocytes activated in vitro, in a specific area of the duct/follicle assembly strongly suggests that this area is structurally and physiologically identical to the thymus-dependent area of other lymphoid tissues. In other words, the duct/follicle assemblies of simian MSG contain the various specific fine-structural elements that are suitable for antigen recognition and processing. These elements are distributed in discrete compartments comparable to the B- and T-cell areas of classical lymphoid tissue.  相似文献   

17.
18.
Somatic portions of gonads in two phanerozonian sea-stars, Ctenodiscus crispatus and Hippasteria phrygiana, were similar in all aspects of gross structure and histology seen previously in both forcipulate and spinulosan asteroids. For the first time, detailed ultrastructural observations have been made of cells and tissues that reveal several features believed to be of universal occurrence in the gonads of asteroids. These include flagellated-collar cells in the visceral peritoneum and other coelomically derived epithelia, muscular-flagellated-collar cells in the visceral peritoneum and genital coelomic (perihaemal) sinus, the digestion of collagen fibers by cells in the connective tissue layer, and the intimate relationship of the genital haemal sinus and the entire germinal epithelium. Structural and functional compartmentalization are discussed in relation to major activities of the gonad throughout the annual reproductive cycle. The distinctive ultrastructure and current generation of flagellated-collar cells found in the visceral peritoneum are analyzed relative to their role in nutrient transport to gonadal tissues. The single flagellum of each flagellated-collar cell beats in coordination with those on neighboring cells to produce extremely rapid, oriented currents of coelomic fluid. The form of beating in an individual flagellum is planar, and the resulting synchronized activity of many adjacent flagella is non-metachronal; both of these characteristic aspects of current production have, thus far, been encountered together only in the Echinodermata. Flagellated-collar cells are efficient in generating currents which mix contents of the coelomic fluid, and they can presumably supply themselves with nutrients. It is concluded that nutrients so obtained are generally not passed through the wall of the gonad to the germinal epithelium and, as a result, have little to do with nutrition of somatic and germinal cells of the germinal epithelium. Alternatively, well-developed genital portions of the haemal system of the sea-star are advanced as the major channels supplying nutrients to germinal epithelia during gametogenesis.  相似文献   

19.
Summary The localization and movements of four nuclear proteins, originally contained in the germinal vesicle ofXenopus oocytes, were followed through early development from cleavage to late neurula. The study made use of monoclonal antibodies directed against germinal vesicle proteins. Biochemical methods showed that all proteins persist in the embryo without a change in molecular size or gross concentration. At early stages the proteins are localized preferentially in the cytoplasm of the animal hemisphere. They shift from the cytoplasm to the nucleus at stages specific for the individual proteins. During mitosis the proteins are released from the nucleus into the cytoplasm.  相似文献   

20.
Summary The study of gonadal organogenesis and differentiation by means of light and electron microscopy suggested the following in Helix aspersa: (1) the distal parts of the acini have components of mesodermal origin, whereas the neck and efferent duct comprise ectodermal elements; (2) a segregation of a germinal line occurs early, during the embryonic life; (3) in juvenile and adult animals, male and female cells arise from a germinal ring located at the base of the acinar neck. Apart from developing oocytes, the epithelium lining the distal region of the acini consists of somatic cells (Sertoli and follicle cells).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号