共查询到20条相似文献,搜索用时 8 毫秒
1.
The hypothesis that the gramicidin A channel stability depends on the level of ion occupancy of the channel was used to derive a mathematical model relating channel lifetime to channel occupancy. Eyring barrier permeation models were examined for their ability to fit the zero-voltage conductance, current-voltage, as well as lifetime data. The simplest permeation model required to explain the major features of the experimental data consists of three barriers and four sites (3B4S) with a maximum of two ions occupying the channel. The average lifetime of the channel was calculated from the barrier model by assuming the closing rate constant to be proportional to the probability of the internal channel sites being empty. The link between permeation and lifetime has as its single parameter the experimentally determined averaged lifetime of gramicidin A channels in the limit of infinitely dilute solutions and has therefore no adjustable parameters. This simple assumption that one or more ions inside the channel completely stabilize the dimer conformation is successful in explaining the experimental data considering the fact that this model for stabilization is independent of ion species and configurational occupancy. The model is used to examine, by comparison with experimental data, the asymmetrical voltage dependence of the lifetime in asymmetrical solutions, the effects of blockers, and the effects of elevated osmotic pressure. 相似文献
2.
Influence of ion occupancy and membrane deformation on gramicidin A channel stability in lipid membranes. 下载免费PDF全文
A Ring 《Biophysical journal》1992,61(5):1306-1315
The average lifetime of gramicidin A channels in monoolein/decane bilayer membranes was measured. The results support the hypothesis of channel stabilization by ion occupancy. The effects of electric field and salt concentration are consistent with the expected effects on both occupancy and membrane compression. The lifetime in asymmetric solutions with divalent cation blockers on one side of the membrane shows a voltage dependence such that the lifetime decreases for positive voltages applied from the blocking side and increases for negative voltages. This result strongly supports the occupancy hypothesis. The lifetime increases with permeant ion concentration, and at the one molar level it also increases with voltage. The voltage dependence of lifetime for a low concentration of permeant ion depends on the total salt level. The results for these conditions are consistent with the assumption that membrane compression also influences the lifetime, even for the "soft" solvent-containing membrane considered here. It is proposed that the channel nearest neighbor lipids need not be fixed in a plane at the channel end. Using a liquid crystal model it may then be shown that surface tension is the major component of the membrane deformation free energy, which may explain the significant effects of the membrane compression on the lifetime. 相似文献
3.
The effects of bilayer thickness and tension on gramicidin single-channel lifetime 总被引:11,自引:0,他引:11
Measurements have been made of gramicidin single-channel lifetimes in monoacylglycerol bilayers chosen so that their thickness ranged from above to below the length of the gramicidin channel. Contact angles, electrical capacities and bulk-phase interfacial tensions have also been determined for these systems. The mean channel lifetime decreased with the hydrocarbon thickness of the membrane until the latter reached 2.2 nm, after which the lifetime was relatively constant. A theoretical model has been proposed which relates the mean channel lifetime (or dissociation constant) to both the thickness and the tension of the bilayers. The analysis of the present results and of those of previous studies has led to the idea that aggregates of water molecules may play an important r?le in the dissociation of the gramicidin channel. 相似文献
4.
The effects of the hydronium ion, H(3)0+, on the structure of the ion channel gramicidin A and the hydrogen-bonded network of waters within the channel were studied to help elucidate a possible mechanism for proton transport through the channel. Several classical molecular dynamics studies were carried out with the hydronium in either the center of a gramicidin monomer or in the dimer junction. Structural reorganization of the channel backbone was observed for different hydronium positions, which were most apparent when the hydronium was within the monomer. In both cases the average O-O distance between the hydronium ion and its nearest neighbor water molecule was found to be approximately 2.55 A, indicating a rather strong hydrogen bond. Importantly, a subsequent break in the hydrogen-bonded network between the nearest neighbor and the next-nearest neighbor(approximately 2.7 -3.0 A) was repeatedly observed. Moreover, the carbonyl groups of gramicidin A were found to interact with the charge on the hydronium ion, helping in its stabilization. These facts may have significant implications for the proton hopping mechanism. The presence of the hydronium ion in the channel also inhibits to some degree the reorientational motions of the channel water molecules. 相似文献
5.
R Smith D E Thomas A R Atkins F Separovic B A Cornell 《Biochimica et biophysica acta》1990,1026(2):161-166
End-to-end helical dimers of gramicidin A form transmembrane pores in lipid bilayers, through which monovalent ions may pass. The groups within the peptide that interact with these ions have been studied by application of solid-state spectroscopic methods to a series of gramicidin A analogues synthesized with 13C in selected peptide carbonyl groups. The resonances of D-Leu10, D-Leu12 and D-Leu14 analogues were perturbed in the presence of 0.16 M sodium ions, whereas the resonances of the carbonyls of Gly2, Ala3, D-Leu4 and Val7, which are closer to the formylated N-terminal end of the peptide, were unaffected. The observed changes in chemical shift anisotropy are indicative of a change in orientation of the abovementioned leucine carbonyls. 相似文献
6.
7.
D A Langs 《Biopolymers》1989,28(1):259-266
The crystal structure of the uncomplexed orthorhombic form of gramicidin A has been determined at 0.86 A resolution. The polypeptide crystallizes from ethanol as a left-handed, double-stranded, antiparallel beta 5.6-helical dimer that is 31 A long and an average of 4.8 A in diameter. The uncomplexed channel does not contain ions or solvent molecules, and its diameter is not uniform but varies from a minimum of 3.85 A to a maximum of 5.47 A. There are three empty cavities in the channel that have a diameter exceeding 5.25 A and appear to be large enough to accommodate water molecules or potassium ions in a chemically reasonable coordination environment. The observed crystal structure does not offer any obvious clues as to why an antiparallel beta 5.6-helix cannot function as an ion channel in lipid bilayers. 相似文献
8.
Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. 总被引:3,自引:10,他引:3 下载免费PDF全文
H W Huang 《Biophysical journal》1986,50(6):1061-1070
The deformation free energy of a lipid bilayer is presented based on the principle of a continuum theory. For small deformations, the free energy consists of a layer-compression term, a splay-distortion term, and a surface-tension term, equivalent to the elastic free energy of a two-layer smectic liquid crystal with surface tension. Minimization of the free energy leads to a differential equation that, with boundary conditions, determines the elastic deformation of a bilayer membrane. When a dimeric gramicidin channel is formed in a membrane of thickness greater than the length of the channel, the membrane deformation reduces the stability of the channel. Previously this effect was studied by comparing the variation of channel lifetime with the surface tension of bilayers (Elliott, J. R., D. Needham, J. P. Dilger, and D. A. Hayden, 1983, Biochim. Biophys. Acta, 735:95-103). The tension was assumed to pull a dimer for a distance z before the channel loses ion conductivity. To account for the data, z was found to be 18 A. With the deformation free energy, the data can be accounted for with z less than or approximately to 1 A, which is consistent with the breaking of hydrogen bonds in a dimer dissociation. Increasing the strength of lipid-protein interactions is not the only consequence of the complete free energy compared with the previous discussions. It also changes the shape of membrane deformation around an embedded channel from convex to concave, and increases the range of deformation from less than 10 A to greater than 20 A. Clearly these will be important factors in the general considerations of lipid-protein interactions and membrane-mediated interactions between proteins. In addition, thermal fluctuations of a membrane are calculated; in particular, we calculate the relations between the intrinsic thickness and the experimentally measured values. The experimental parameters of monoolein-squalene membranes are used for quantitative analyses. 相似文献
9.
Devaki A. Kelkar 《生物化学与生物物理学报:生物膜》2007,1768(9):2011-2025
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been extensively used to study the organization, dynamics and function of membrane-spanning channels. In recent times, the availability of crystal structures of complex ion channels has challenged the role of gramicidin as a model membrane protein and ion channel. This review focuses on the suitability of gramicidin as a model membrane protein in general, and the information gained from gramicidin to understand lipid-protein interactions in particular. Special emphasis is given to the role and orientation of tryptophan residues in channel structure and function and recent spectroscopic approaches that have highlighted the organization and dynamics of the channel in membrane and membrane-mimetic media. 相似文献
10.
Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel. 下载免费PDF全文
D G Levitt 《Biophysical journal》1978,22(2):221-248
A theoretical model of the gramicidin A channel is presented and the kinetic behavior of the model is derived and compared with previous experimental results. The major assumption of the model is that the only interaction between ions in a multiply-occupied channel is electrostatic. The electrostatic calculations indicate in a multiply-occupied channel is electrostatic. The electrostatic calculations indicate that there will be potential wells at each end of the channel and, at high concentrations, that both wells can be occupied. The kinetics are based on two reaction steps: movement of the ion from the bulk solution to the well and movement between the two wells. The kinetics for this reaction rate approach are identical to those based on the Nernst-Planck equation in the limit where the movement between the two wells is rate limiting. The experimental results for sodium and potassium are consistent with a maximum of two ions per channel. To explain the thallium results it is necessary to allow three ions per channel. It is shown that this case is compatible with the electrostatic calculations if the presence of an anion is included. The theoretical kinetics are in reasonable quantitative agreement with the following experimental measurements: single channel conductance of sodium, potassium, and thallium; bi-ionic potential and permeability ratio between sodium-potassium and potassium-thallium; the limiting conductance of potassium and thallium at high applied voltages; current-voltage curves for sodium and potassium at low (but not high) concentrations; and the inhibition of sodium conductance by thallium. The results suggest that the potential well is located close to the channel mouth and that the conductance is partially limited by the rate going from the bulk solution to the well. For thallium, this entrance rate is probably diffusion limited. 相似文献
11.
Yuri N. Antonenko Tatyana B. Stoilova Natalya S. Egorova Alexander A. Sobko Andrey Y. Surovoy 《生物化学与生物物理学报:生物膜》2006,1758(4):493-498
According to recent data, gramicidin A analogues having positively charged amino acid sequences at the C-termini exhibit two types of channel activity in lipid membranes: classical cation-selective channels and large unselective pores. The induction of unselective pores was shown here to strongly depend on the redox state of the membrane-bathing solution, if the gramicidin analogue contained a cysteine residue in the sequence GSGPKKKRKVC attached to the C-terminus. In particular, the addition of H2O2 led to an increase in the transmembrane current and the loss of cationic selectivity on planar bilayer lipid membranes and an increase in the carboxyfluorescein leakage of liposomes. The effect was observed at high concentration of the peptide while was absent at the single-channel level. It was concluded that oxidation led to possible formation of dimers of the peptide, which promoted the formation of large unselective pores. 相似文献
12.
The main features of the ion permeability of gramicidin channels are summarized. The significance of maximums in the single channel conductance-concentration curves, of concentration-dependent permeability ratios, and or current-voltage curves with concentration-dependent form, as well as of other features, is discussed in terms of the mechanism of the ion transfer processes. The observations are then shown to be accounted for by rate theory expressions derived for a model pore consisting of two sites in series and in which ions are not permitted to pass each other. The status of other models is briefly reviewed. 相似文献
13.
Using Urry's gramicidin A (GA) atomic coordinates and ab into calculations, the interaction energies of a K+ ion with GA are examined. From these energies the values of the fitting parameters are obtained for 6-12-1 atom-atom pair potentials. The potential of the GA channel as experienced by the ion is analyzed in detail. An energy profile of the K+ ion in the GA channel is obtained by analyzing iso-energy maps. Using Monte Carlo simulations, the energy profiles of the K+ ion with the solvated GA channel are analyzed and the hydration structures in the presence of the K+ ion are studied. 相似文献
14.
Antonenko YN Stoilova TB Kovalchuk SI Egorova NS Pashkovskaya AA Sobko AA Kotova EA Surovoy AY 《Biochimica et biophysica acta》2006,1758(4):493-498
According to recent data, gramicidin A analogues having positively charged amino acid sequences at the C-termini exhibit two types of channel activity in lipid membranes: classical cation-selective channels and large unselective pores. The induction of unselective pores was shown here to strongly depend on the redox state of the membrane-bathing solution, if the gramicidin analogue contained a cysteine residue in the sequence GSGPKKKRKVC attached to the C-terminus. In particular, the addition of H2O2 led to an increase in the transmembrane current and the loss of cationic selectivity on planar bilayer lipid membranes and an increase in the carboxyfluorescein leakage of liposomes. The effect was observed at high concentration of the peptide while was absent at the single-channel level. It was concluded that oxidation led to possible formation of dimers of the peptide, which promoted the formation of large unselective pores. 相似文献
15.
Alexander V. Nemukhin Ilya A. Kaliman Alexander A. Moskovsky 《Journal of molecular modeling》2009,15(8):1009-1012
The results of potential of mean force (PMF) calculations for the distinct stages of proton conduction through the gramicidin
A channel, including proton migration, reorientation of the water file and negative ion defect migration, are presented. The
negative ion defect migration mechanism was hypothesized in experimental studies but was not considered previously in molecular
dynamics simulations. The model system consisted of the peptide chains constructed on the base of the structure PDBID:1JNO,
the inner file of nine water molecules and external clusters of water molecules placed at both ends of the channel. Potential
energy functions were computed with the CHARMM/PM6/TIP3P parameters. The results obtained for proton migration and water file
reorientation are basically consistent with those reported previously by Pómès and Roux (Biophys J 82:2304, 2002) within the similar approach. For the newly considered mechanism of negative ion defect migration from the channel center
to the end of the water file we obtain the energy 3.8 kcal mol−1 which is not considerably different from the activation energy of water reorientation, 5.4 kcal mol−1. Therefore this mechanism may principally compete for the rate-limiting step in proton conduction in gramicidin. 相似文献
16.
Single-molecule spectroscopies in combination with single-channel patch-clamp measurements have the potential for providing new information on ion channel gating processes. Fluorescent gramicidin derivatives could provide a means for calibrating such experiments since the structure of the open channel is known and the mechanism of gating (peptide dimerization) is generally agreed. We describe here the synthesis and characterization of two pairs of gramicidin derivatives that should prove useful for such studies. They contain robust fluorophores, undergo resonance energy transfer (FRET) when they dimerize, and have single-channel properties close to those of the wild-type channel. 相似文献
17.
A quantitative explanation of the effects of some alcohols on gramicidin single-channel lifetime 总被引:1,自引:0,他引:1
J R Elliott D Needham J P Dilger O Brandt D A Haydon 《Biochimica et biophysica acta》1985,814(2):401-404
The effects of n-decanol, n-hexadecanol, n-octyl(oxyethylene)3 alcohol and cholesterol on gramicidin single-channel lifetime in planar lipid bilayers have been determined. The bilayers used were formed from a solution of monoolein in squalene. Measurements have also been made of the above compounds' effects on membrane thickness (as measured by electrical capacity and optical reflectance technique) and surface tension (as derived from bulk interfacial tension and bilayer-lens contact angle measurements). The reduction in single-channel lifetime caused by the n-alkanols may be accounted for quantitatively in terms of the effects of these compounds on bilayer thickness and surface tension. The n-octyl(oxyethylene)3 alcohol caused an increase in single-channel lifetime which is also consistent with the thickness/tension theory. The reduction in channel lifetime caused by cholesterol, however, was much larger than would be predicted from its effects on bilayer thickness and surface tension. 相似文献
18.
Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy. 总被引:2,自引:4,他引:2
The structural and thermodynamic factors responsible for the singly and doubly occupied saturation states of the gramicidin channel are investigated with molecular dynamics simulations and free energy perturbation methods. The relative free energy of binding of all of the five common cations Li+, Na+, K+, Rb+, and Cs+ is calculated in the singly and doubly occupied channel and in bulk water. The atomic system, which includes the gramicidin channel, a model membrane made of neutral Lennard-Jones particles and 190 explicit water molecules to form the bulk region, is similar to the one used in previous work to calculate the free energy profile of a Na+ ion along the axis of the channel. In all of the calculations, the ions are positioned in the main binding sites located near the entrances of the channel. The calculations reveal that the doubly occupied state is relatively more favorable for the larger ions. Thermodynamic decomposition is used to show that the origin of the trend observed in the calculations is due to the loss of favorable interactions between the ion and the single file water molecules inside the channel. Small ions are better solvated by the internal water molecules in the singly occupied state than in the doubly occupied state; bigger ions are solvated almost as well in both occupation states. Water-channel interactions play a role in the channel response. The observed trends are related to general thermodynamical properties of electrolyte solutions. 相似文献
19.
A. Pullman 《Journal of biosciences》1985,8(1-2):307-314
Energy profiles have been established for the transport of Na+, K+ and Cs+ through the gramicidin A channel. In Urry’s head-to-headβ
3.3
6.3
left-handed helical dimer structure, using a refined methodology for the calculation of intra and intermolecular interactions.
The computations show the important role, for the energy profile and the position of the possible binding site, of the flexible
ethanolamine chain, whose significance was till now overlooked. The calculations indicate that the barriers at the entrance
and at the center of the channel should be in the order Na+ XXX K+ XXX Cs+ but predict also that the energies of the binding sites should be the greatest for Na+ and, then, comparable for K+ and Cs+. The indications concerning the barriers are confirmed by experiment. 相似文献
20.
We have measured the fluctuations in the current through gramicidin A (GA) channels in symmetrical solutions of monovalent cations of various concentrations, and compared the spectral density values with those computed using E. Frehland's theory for noise in discrete transport systems (Frehland, E. 1978. Biophys. Chem. 8:255-265). The noise for the transport of NH4+ and Na+ ions in glycerol-monooleate/squalene membranes could be accounted for entirely by "shot noise" in the process of transport through a single-filing pore with two ion binding sites. However, in confirmation of results in a previous paper (Sigworth, F. J., D. W. Urry, and K. U. Prasad. 1987. Biophys. J. 52:1055-1064) currents of Cs+ showed a substantial excess noise at low ion concentrations, as did currents of K+ and Rb+. The excess noise was increased in thicker membranes. The observations are accounted for by a theory that postulates fluctuations of the entry rates of ions into the channel on a time scale of approximately 1 microsecond. These fluctuations occur preferentially when the channel is empty; the presence of bound ions stabilizes the "high conductance" conformation of the channel. The fluctuations are sensed to different degrees by the various ion species, and their kinetics depend on membrane thickness. 相似文献