首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: Production and characterization of biosurfactant from renewable sources. METHODS AND RESULTS: Biosurfactant production was carried out in 3-l fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (9.8 mg ml(-l)) and biosurfactant production (6.4 mg ml(-l)) occurred with peanut oil cake at 120 and 132 h, respectively. Chemical characterization of the biosurfactant revealed that it is a glycolipopeptide with chemical composition of carbohydrate (40%), lipid (27%) and protein (29%). The biosurfactant is able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene; the emulsification activity was comparatively higher than the activity found with Triton X-100. CONCLUSION: This study indicates the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources like waste motor lubricant oil and peanut oil cake. Emulsification activity found with the biosurfactant against different hydrocarbons showed the possibility of the application of biosurfactants against diverse hydrocarbon pollution. SIGNIFICANCE AND IMPACT OF THE STUDY: The data obtained from the study could be useful for large-scale biosurfactant production using economically cheaper substrates. Information obtained in emulsification activity and laboratory-scale experiment on bioremediation inferred that bioremediation of hydrocarbon-polluted sites may be treated with biosurfactants or the bacteria that produces it.  相似文献   

2.
Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38°C, and 30‰ salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.  相似文献   

3.
Criteria selected for screening of biosurfactant production by Bacillus megaterium were hemolytic assay, bacterial cell hydrophobicity and the drop-collapse test. The data on hemolytic activity, bacterial cell adherence with crude oil and the drop-collapse test confirmed the biosurfactant-producing ability of the strain. Accordingly, the strain was cultured at different temperatures, pH values, salinity and substrate (crude oil) concentration in mineral salt medium to establish the optimum culture conditions, and it was shown that 38°C, 2.0% of substrate concentration, pH 8.0 and 30‰ of salt concentration were optimal for maximum growth and biosurfactant production. Laboratory scale biosurfactant production in a fermentor was done with crude oil and cheaper carbon sources like waste motor lubricant oil and peanut oil cake, and the highest biosurfactant production was found with peanut oil cake. Characterization of partially purified biosurfactant inferred that it was a glycolipid with emulsification potential of waste motor lubricant oil, crude oil, peanut oil, diesel, kerosene, naphthalene, anthracene and xylene.  相似文献   

4.
The thermophilic bacterium Alcaligenes faecalis isolated from the crude oil contaminated soil of Upper Assam, India. The isolated bacterium was first screened for the ability to produce biosurfactant. The strain growing at 42 °C could produce higher amount of biosurfactant in medium supplemented with 2% (v/v) diesel as sole source of carbon and energy. Biochemical characterizations including FT-IR and MS studies suggested the biosurfactant to be glycolipid. Tensiometric studies revealed that the biosurfactant produced by the bacterial strain could decrease the surface tension (??) at air-water interface from 71.6 to 32.3 mNm−1 after 96 h of growth on hydrocarbon and possessed a low critical micelle concentration (CMC) value of approximately 38 mgl−1, indicating high surface activity. The culture supernatant containing the biosurfactant was found to be functionally stable at varying pH (2-12), temperature (100 and 121 °C) and salinity (1-6% NaCl, w/v) conditions. Both the culture broth and the cell free supernatant exhibited high emulsifying activity against the different hydrocarbons and the crude oil components. The increase in cell surface hydrophobicity and glycolipid production by the strain suggested the existence of biosurfactant enhanced interfacial uptake of the hydrocarbons. Moreover, the partially purified biosurfactant exhibited antimicrobial activity by inhibiting the growth of several bacterial and fungal species. The strain represented a new class of biosurfactant producers and could be a potential candidate for the production of glycolipid biosurfactant which could be useful in a variety of biotechnological and industrial processes, particularly in the oil industry.  相似文献   

5.
Biosurfactant production from synthetic medium and industrial waste, viz. distillery and whey wastes was investigated by using an oily sludge isolate Pseudomonas aeruginosa strain BS2. In synthetic medium separately supplemented with glucose and hexadecane as water-soluble and -insoluble carbon sources, respectively, strain BS2 reduced the surface tension of the fermentation broth from 57 to 27 mN/m. The culture produced biosurfactant during the stationary growth phase and its yield was 0.97 g/l. The culture utilized distillery and whey wastes for its growth, as maximum cell counts reached to 54 × 108 and 64 × 109 c.f.u./ml from an initial inoculum size of 1 × 05 c.f.u./ml, respectively, within 48 h of incubation and in these wastes the yields of biosurfactant obtained were 0.91 and 0.92 g/l, respectively. In synthetic medium, distillery and whey wastes, strain BS2 produced a crystalline biosurfactant which belonged to the category of secondary metabolites and its maximum production occurred after the onset of nitrogen-limiting conditions. After recovering biosurfactant from the fermented waste, the chemical oxygen demand (COD) of distillery and whey wastes was significantly reduced by 81 and 87%, respectively. Total acids, nitrogen and phosphate levels in distillery waste were reduced by 90, 92 and 92%, respectively, while in case of whey waste the concentration of these nutrients was reduced by 88, 95 and 93%, respectively. The isolated biosurfactant possessed potent surface active properties, as it effectively reduced the surface tension of water from 72 to 27 mN/m and formed 100% stable emulsions of a variety of water-insoluble compounds such as hydrocarbons, viz. hexadecane, crude oil, kerosene and oily sludge and pesticides, viz. dichlorodiphenyltrichloroethane (DDT) and benzene hexachloride (BHC). The effectiveness of biosurfactant was also evident from its low critical micellar concentration (CMC) which was 0.028 mg/ml.  相似文献   

6.
Biosurfactants are amphiphilic compounds produced by several microorganisms that reduce the surface tension. Low toxicity, optimal activity in extreme conditions, biodegradability and production from several wastes are main advantages of biosurfactants as compared to synthetic surfactants. Production of biosurfactant by a white rot fungus Pleurotus djamor on sunflower seed shell in solid-state fermentation was determined by emulsification indexes, oil spreading activity and surface tension (28.82 ± 0.3mN/m) measurement. The critical micelle concentration was detected as 0.964 ± 0.09 mg/mL. Also, the chemical and physicochemical properties of the biosurfactant produced were investigated. Considering the results of the chemical contents analysis, HPLC, FT-IR and 1H-NMR, it can be concluded that the produced biosurfactant has a complex structure. Besides, resistance of its activity to environmental factors such as temperature, pH and salt concentration, as well as its thermal stability, were investigated. Additionally, the produced biosurfactant formed stabile emulsions with different hydrocarbons. Lastly, the performance of removing waste frying oil from contaminated sand of produced biosurfactant was detected as 76.57 ± 6%. Owing to its high emulsification capacity, low surface tension and critical micelle concentration, the biosurfactant, shows great potential for use in hydrocarbon removal applications.  相似文献   

7.
Lactobacillus delbrueckii cultured with peanut oil cake as the carbon source yielded 5.35 mg ml(-1) of biosurfactant production. Five sets of microcosm biodegradation experiments were carried out with crude oil as follows: set 1 - bacterial cells+crude oil, set 2 - bacterial cells+crude oil+fertilizer, set 3 - bacterial cells+crude oil+biosurfactant, set 4 - bacterial cells+crude oil+biosurfactant+fertilizer, set 5 - with no bacterial cells, fertilizer and biosurfactant (control). Maximum degradation of crude oil was observed in set 4 (75%). Interestingly, when biosurfactant and bacterial cells were used (set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in set 4 was 7% higher degradation level in microcosm experiments. It is evident from the results that biosurfactants alone is capable of promoting biodegradation to a large extent without added fertilizers.  相似文献   

8.
Rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from petroleum-contaminated soil was investigated. The effects of carbon, nitrogen and carbon to nitrogen ratio on biosurfactant production were examined using mineral salts medium as the growth medium. The tenso-active properties (surface activity and critical micelle concentrations of the produced biosurfactant were also evaluated. The best carbon source, nitrogen source were glucose and sodium nitrate giving rhamnolipid yields of 5.28 and 4.38 g l−1, respectively. The maximum rhamnolipid production of 5.46 g l−1 was at C/N (glucose/sodium nitrate) of 22. The rhamnolipid biosurfactant reduced the surface tension of water from 72 to ~37 mN/m. It also has critical micelle concentration of ~28 mg l−1. Thus, the results presented in our reports show that the produced rhamnolipid can find wide applications in various bioremediation activities such as enhanced oil recovery and petroleum degradation.  相似文献   

9.
Citrus × limon cv. Femminello Comune (Rutaceae) from Rocca Imperiale (Italy), one of the six Protected Geographical Indication (PGI) Italian lemon crops, has been recently received renewed interest. In this work, fresh and dried peels and leaves were extracted by hydrodistillation, supercritical fluid extraction (SFE), and Soxhlet apparatus. Chemical profile was assessed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Except for leaves extracts obtained by Soxhlet apparatus, the monoterpene hydrocarbons fraction dominated. Limonene, γ‐terpinene, and β‐pinene were the main identified compounds. The antioxidant activity was investigated using different in vitro assays namely 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), ABTS, ferric reducing ability power (FRAP), and β‐carotene bleaching test. In DPPH test, the essential oil obtained by hydrodistillation of fresh peel exhibited the highest activity (IC50 of 1.17 mg/ml). Leaves extracted by SFE showed a good activity in both DPPH and β‐carotene bleaching test with IC50 values of 2.20 and 6.66 mg/ml, respectively. Monoterpene hydrocarbons fraction exhibited a positive Pearson's correlation coefficient with all antioxidant assays. Leaves, often considered waste material, should be considered from a different point because they represent a matrix of indisputable interest.  相似文献   

10.
Biosurfactant production by Candida glabrata was studied using vegetable fat waste as substrate. A factorial design was initially carried out to investigate the effects and interactions of waste, yeast extract and glucose on the surface tension after 144 h cultivation. Maximum surface tension reduction was achieved with vegetable fat waste at 5% and yeast extract at 0.2%. The biosurfactant containing cell-free broth retained its surface-active properties after incubation at high temperatures, at a wide range of pH values and salt concentrations. Comparison between three solvent systems for surfactant recovery showed that ethyl acetate extracted both crude extracellular and intracellular biosurfactant with high product recovery. The isolated extracellular biosurfactant showed a CMC of 1% and the surface tension at that point was 24 mN m−1. Preliminary chemical composition revealed the presence of carbohydrates, proteins and lipids. The application of the crude biosurfactant to a soil–water-hydrophobic contaminant system was investigated and the apparent critical micelle concentration was determined at 7% of the broth, although the best oil removal (92.6%) had been obtained with 10% of the cell-free broth. The cost of application of the biosurfactant in soils was estimated based on the cost of a commercial biosurfactant.  相似文献   

11.
Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g?1, respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) ? 0.5 g g?1), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max  = 0.26 ± 0.02 h?1), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l?1, during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.  相似文献   

12.
The strategy of optimization using sequential factorial design was employed to enhance the tensio-active emulsifying agent produced by Candida lipolytica using soybean oil refinery residue as substrate. A full factorial design was used to evaluate the impact of three fermentation factors—amounts of refinery residue, glutamic acid and yeast extract. This allowed exclusion of the yeast extract. Full factorials designs were then sequentially used to optimize the levels of the residue and glutamic acid. The surface tension value was finally reduced to 25.29 mN/m. The maximum emulsifier activity using different substrates was within 40 h of cultivation. The surface tension of the cell-free broth containing the biosurfactant remained very stable during exposure to a wide range of pH (2–12), temperatures (0–120°C) and salinity (2–10% NaCl). The combination of an industrial waste and a cheap substrate therefore seems to be very promising for the low-cost production of potent biosurfactant.  相似文献   

13.
This large-scale production, toxicity, characterization and economic analysis of the biosurfactant from Candida lipolytica UCP 0988 produced in the low-medium formulated with animal fat and corn steep liquor was investigated. The biosurfactant was produced in the stationary phase under 200 rpm in the absence of aeration and reduced the surface tension of the medium from 50 to 28 mN/m after 96 h, yielding 10.0 g/L of isolated biosurfactant in a 2 L bioreactor. The production was maximized in a 50 L bioreactor, reaching 40 g/L biosurfactant and 25 mN/m. The cell biomass was quantified and characterized for use in animal nutrition. Chemical structures of the biosurfactant were identified using FTIR and NMR. The crude biosurfactant was not toxic to the bivalve Anomalocardia brasiliana, to the microcrustacean Artemia salina, or three species of vegetables seeds. The biosurfactant stimulated the degradation of motor oil by the seawater indigenous microorganisms. The results obtained indicate that the biosurfactant produced has great potential to be applied as a bioremediation agent for cleaning oil spills.  相似文献   

14.
To obtain predominant bacteria degrading crude oil, we isolated some bacteria from waste soybean oil. Isolated bacterial strain had a marked tributyrin (C4:0) degrading activity as developed clear zone around the colony after incubation for 24h at 37 degrees C. It was identified as Klebsiella sp. Y6-1 by analysis of 16S rRNA gene. Crude biosurfactant was extracted from the culture supernatant of Klebsiella sp. Y6-1 by organic solvent (methanol:chloroform:1-butanol) after vacuum freeze drying and the extracted biosurfactant was purified by silica gel column chromatography. When the purified biosurfactant dropped, it formed degrading zone on crude oil plate. When a constituent element of the purified biosurfactant was analyzed by TLC and SDS-PAGE, it was composed of peptides and lipid. The emulsification activity and stability of biosurfactant was measured by using hydrocarbons and crude oil. The emulsification activity and stability of the biosurfactant showed better than the chemically synthesized surfactant. It reduced the surface tension of water from 72 to 32 mN/m at a concentration of 40 mg/l.  相似文献   

15.
An efficient biosurfactant-producing bacterium was isolated and cultured from petroleum reservoir in northeast China. Isolate was screened for biosurfactant production using haemolytic assay, Cetyl Trimethyl Ammonium Bromide agar plate assay (CTAB) and the qualitative oil-displacement test. Based on partial sequenced 16S rDNA analysis of isolate, USTBa, identified as Bacillus methylotrophicus with 100% identity. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties. The maximum biosurfactant production was obtained when the cells were grown on minimal salt medium containing 2% (v/v) crude-oil as the sole source of carbon at 35 °C and 180 rpm after 192 h. This strain had a high emulsification activity and biosurfactant production of 78% and 1.8 g/L respectively. The cell free broth containing biosurfactant could reduce the surface tension to 28 mN/m. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant indicates the presence of carboxyl, hydroxyl and methoxyl functional groups. Elemental analysis of the biosurfactant by Energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. The strain USTBa represented as a potent biosurfactant-producer and could be useful in variety of biotechnological and industrial processes, particularly oil industry.  相似文献   

16.
Biosurfactant-producing bacteria were isolated from various sources in the south of Thailand. Isolates were screened for biosurfactant production using jackfruit seed powder (JSP) as a novel and promising substrate. The highest biosurfactant activity was obtained with a bacterial strain which was identified by 16S rRNA gene sequence analysis as Deinococcus caeni PO5. D. caeni PO5 was able to grow and reduce the surface tension of the culture supernatant from 67.0 to 25.0 mN/m after 87 h of cultivation when 40 g/l of JSP and 1 g/l of commercial monosodium glutamate were used as carbon and nitrogen sources, respectively. The biosurfactant obtained by ethyl acetate extraction showed high surface tension reduction (47.0 mN/m), a small critical micelle concentration value (8 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. Chemical characterization by biochemical testing, Fourier transform infrared spectroscopy, and mass spectra revealed that the obtained biosurfactant was a glycolipid-type biosurfactant. The obtained biosurfactant was capable of forming stable emulsions with various hydrocarbons and had the ability to enhance oil recovery, the solubility of polyaromatic hydrocarbons, heavy metal removal, and antimicrobial activity.  相似文献   

17.
The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C.  相似文献   

18.
This study reports characterization of a biosurfactant‐producing fungal isolate from oil contaminated soil of Missa Keswal oil field, Pakistan. It was identified as Fusarium sp. BS‐8 on the basis of macroscopic and microscopic morphology, and 18S rDNA gene sequence homology. The biosurfactant‐producing capability of the fungal isolates was screened using oil displacement activity, emulsification index assay, and surface tension (SFT) measurement. The optimization of operational parameters and culture conditions resulted in maximum biosurfactant production using 9% (v/v) inoculum at 30°C, pH 7.0, using sucrose and yeast extract, as carbon and nitrogen sources, respectively. A C:N ratio of 0.9:0.1 (w/w) was found to be optimum for growth and biosurfactant production. At optimal conditions, it attained lowest SFT (i.e., 32 mN m?1) with a critical micelle concentration of ≥ 1.2 mg mL?1. During 5 L shake flask fermentation experiments, the biosurfactant productivity was 1.21 g L?1 pure biosurfactant having significant emulsifying index (E24, 70%) and oil‐displacing activity (16 mm). Thin layer chromatography and Fourier transform infrared spectrometric analyses indicated a lipopeptide type of the biosurfactant. The Fusarium sp. BS‐8 has substantial potential of biosurfactant production, yet it needs to be fully characterized with possibility of relatively new class of biosurfactants. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1065–1075, 2014  相似文献   

19.
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.  相似文献   

20.
Production of biosurfactant by free and alginate-entrapped cells of Pseudomonas fluorescens Migula 1895-DSMZ was investigated using olive oil as the sole carbon and energy source. Biosurfactant synthesis was followed by measuring surface tension and emulsifying index E24 over 5 days at ambient temperature and at neutral pH. Diffusional limitations in alginate beads affected the kinetics of biosurfactant production when compared to that obtained with free cells culture. Nevertheless, the emulsion stability was improved and fewer by-products interfered with the biosurfactant activity. A decrease in pH down to 5 in the case of immobilized cells was observed during the first 3 days, after which it returned to its initial value. The minimum values of surface tension were 30 and 35 dynes cm−1 achieved after 40 and 72 h with free and immobilized cells, respectively, while the corresponding maximum E24 values were 67 and 62%, respectively. After separation by acetone precipitation, the biosurfactant showed a rhamnolipid-type in nature, and had a good foaming and emulsifying activities. The critical micellar concentration was found to be 290 mg l−1. The biosurfactant also showed good stability during exposure to high temperatures (up to 120 °C for 15 min), to high salinity (10% NaCl) and to a wide range of pH (4–9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号