首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
H Kobayashi  T Yanagita  H Yokoo  A Wada 《Peptides》2001,22(11):1895-1901
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are peptides having multiple physiological functions and are most abundantly expressed in the adrenal medulla. In addition to PAMP, PAMP12, a 12 amino acid peptide with sequence identity to PAMP between amino acids 9-20, has also been shown to be expressed in the adrenal medulla. AM, PAMP and PAMP12 are released along with catecholamines by regulated exocytosis upon stimulation of adrenal chromaffin cells. PAMP and PAMP12 regulate catecholamine release and synthesis by interfering with nicotinic cholinergic receptors in these chromaffin cells. AM may also cause gradual release of catecholamine from these cells. AM, PAMP and PAMP12 are endogenous peptides that modulate chromaffin cell function via different mechanisms.  相似文献   

2.
Adrenal medullary chromaffin cells are a major peripheral output of the sympathetic nervous system. Catecholamine release from these cells is driven by synaptic excitation from the innervating splanchnic nerve. Acetylcholine has long been shown to be the primary transmitter at the splanchnic-chromaffin synapse, acting through ionotropic nicotinic acetylcholine receptors to elicit action potential-dependent secretion from the chromaffin cells. This cholinergic stimulation has been shown to desensitize under sustained stimulation, yet catecholamine release persists under this same condition. Recent evidence supports synaptic chromaffin cell stimulation through alternate transmitters. One candidate is pituitary adenylate cyclase activating peptide (PACAP), a peptide transmitter present in the adrenal medulla shown to have an excitatory effect on chromaffin cell secretion. In this study we utilize native neuronal stimulation of adrenal chromaffin cells in situ and amperometric catecholamine detection to demonstrate that PACAP specifically elicits catecholamine release under elevated splanchnic firing. Further data reveal that the immediate PACAP-evoked stimulation involves a phospholipase C and protein kinase C-dependant pathway to facilitate calcium influx through a Ni2+ and mibefradil-sensitive calcium conductance that results in catecholamine release. These data demonstrate that PACAP acts as a primary secretagogue at the sympatho-adrenal synapse under the stress response.  相似文献   

3.
Increased arachidonic acid release occurred during activation of catecholamine secretion from cultured bovine adrenal medullary chromaffin cells. The nicotinic agonist 1,1-dimethyl-4- phenylpiperazinium (DMPP) caused an increased release of preincubated [3H]arachidonic acid over a time course which corresponded to the stimulation of catecholamine secretion. Like catecholamine secretion, the DMPP-induced [3H]arachidonic acid release was calcium-dependent and was blocked by the nicotinic antagonist mecamylamine. Depolarization by elevated K+, which induced catecholamine secretion, also stimulated arachidonic acid release. Because arachidonic acid release from cells probably results from phospholipase A2 activity, our findings indicate that phospholipase A2 may be activated in chromaffin cells during secretion.  相似文献   

4.
Nicotine evokes the release of catecholamines from bovine adrenal glands perfused with oxygenated Krebs-bicarbonate solution. Two 2-min pulses of 5 microM nicotine, at 40-min intervals (S1 and S2), gave net catecholamine outputs of 45.2 +/- 3.6 and 29.1 +/- 3.5 micrograms/8 min, respectively. Apomorphine (1 or 10 microM) markedly inhibited catecholamine release during S2 to 9.1 +/- 2.2 and 0.5 micrograms/8 min, respectively. Haloperidol (0.5 microM) reversed the inhibitory effects of apomorphine. Haloperidol alone enhanced catecholamine release induced by nicotine to 67.9 +/- 7.9 micrograms/8 min. [3H]Spiperone binds to adrenomedullary membranes with a KD of 0.24 nM and a Bmax of 117 fmol/mg of protein. Whereas spiperone and haloperidol potently displaced such binding, 3,4-dihydroxyphenylethylamine (dopamine) and sulpiride were poorer displacers, and SCH23390, prazosin, phenoxybenzamine, propranolol, BAY-K-8644, and nitrendipine did not displace [3H]spiperone bound. These data strongly suggest that, as in the cat, the bovine adrenal medulla chromaffin cell contains a dopaminergic receptor that modulates the catecholamine secretory process triggered by stimulation of the nicotinic cholinoceptor. Such a receptor seems to be of the D2 type and might be involved in a sympatho-adrenal cooperative mechanism contributing to the maintenance of cardiovascular homeostasis during stressful situations as well as to the pathogenesis of hypertension. If so, selective dopaminergic agonists might prove clinically useful in the treatment of hypertension.  相似文献   

5.
We reported earlier that adenine nucleotides and adenosine inhibit acetylcholine-induced catecholamine secretion from bovine adrenal medulla chromaffin cells. In this article, we used an adenosine analogue, N6-L-phenylisopropyladenosine (PIA), to study the mechanism underlying inhibition of catecholamine secretion by adenosine. PIA inhibits secretion induced by a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium, or by elevated external K+. The half-maximal effect on 1,1-dimethyl-4-phenylpiperazinium-induced secretion occurred at approximately 5 x 10(-5) M. The inhibition is immediate and reversible. Fura-2 measurements of cytosolic free Ca2+ indicate that PIA inhibits Ca2+ elevation caused by stimulation; measurements of 45Ca2+ influx show that PIA inhibits uptake of Ca2+. PIA does not inhibit calcium-evoked secretion from digitonin-permeabilized cells, nor does PIA cause any significant change in the dependence of catecholamine secretion on calcium concentration. These data suggest that inhibition by PIA occurs at the level of the voltage-sensitive calcium channel.  相似文献   

6.
Abstract: We investigated the effect of the adenosine receptor agonist 5'-( N -ethylcarboxamido)adenosine (NECA) in catecholamine secretion from adrenal chromaffin cells that exhibit only the A2b subtype adenosine receptor. NECA reduced catecholamine release evoked by the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) in a time-dependent manner. Inhibition reached 25% after 30–40-min exposure to NECA. This effect on DMPP-evoked catecholamine secretion was mirrored by a similar (27.7 ± 3.3%), slowly developing inhibition of [Ca2+]i transients induced by DMPP that peaked at 30-min preincubation with NECA. The capacity of the chromaffin cells to buffer Ca2+ load was not affected by the treatment with NECA. Short-term treatment with NECA failed both to modify [Ca2+]i levels and to increase endogenous diacylglycerol production, showing that NECA does not activate the intracellular Ca2+/protein kinase C signaling pathway. The inhibitory effects of NECA were accompanied by a 30% increase of protein phosphatase activity in chromaffin cell cytosol. We suggest that dephosphorylation of a protein involved in DMPP-evoked Ca2+ influx pathway (e.g., L-type Ca2+ channels) could be the mechanism of the inhibitory action of adenosine receptor stimulation on catecholamine secretion from adrenal chromaffin cells.  相似文献   

7.
Kostyuk  P. G.  Pochynyuk  O. M.  Zaika  O. L.  Lukyanetz  E. A. 《Neurophysiology》2003,35(3-4):201-207
Activation of acetylcholine receptors (AChR) triggers catecholamine release from adrenal chromaffin cells and release of neurotransmitters in neuron-to-neuron and neuromuscular junctions, including those on smooth muscle cells. Calcium ions play the role of the main intracellular messenger, which mediates these processes. In our study, we explored the properties of Ca2+ signaling triggered by activation of AChR by analyzing the characteristics of Ca2+ transients induced by selective activation of nicotinic (nAChR) and muscarinic (mAChR) cholinoreceptors using Fura-2 fluorescent measurements in experiments on rat chromaffin cells. Two populations of chromaffin cells, which in a different manner responded to AChR stimulation, were classified. We found that the mean frequency of quantum release induced by ACh is considerably higher than that during hyperpotassium cell depolarization. Comparative analysis of single secretory events showed that, in the case of stimulation by ACh, single secretory spikes demonstrate faster kinetic characteristics than those induced by depolarization. Statistical analysis of the integral magnitude (area) of single secretory spikes evoked by both types of stimulation showed no significant difference despite amplitude and kinetic dissimilarities between such secretory events. Mathematical modeling of the dynamics of the exocytotic processes led to the conclusion that the reason for the specific kinetic characteristics of single secretory responses may be different diameters of the secretory pores formed during fusion of secretory vesicles with the plasma membrane.  相似文献   

8.
Substance P, a peptide endogenous to the splanchnic nerve, is known to inhibit the acetylcholine-and nicotine-induced release of catecholamines from isolated adrenal chromaffin cells. In the present study the effect of substance P on desensitization of catecholamine release from these cells was examined. Substance P (10(-5) M) completely protected against desensitization of catecholamine release produced by acetylcholine at 37 degrees C or 23 degrees C and by nicotine at 23 degrees C; substance P also afforded appreciable protection against nicotine-induced desensitization at 37 degrees C. The peptide had no effect on K+-induced desensitization of catecholamine release. Like substance P, d-tubocurarine also prevented nicotinic desensitization. Substance P prevented both of two components of nicotinic desensitization, i.e. the Ca2+-dependent component and the Ca2+-independent, depletion-independent component of desensitization. Substance P had little effect on subsequent catecholamine uptake, indicating that substance P's protection against desensitization is a result of facilitation of catecholamine release rather than inhibition of catecholamine reuptake. Nicotine-induced catecholamine release and nicotinic desensitization of catecholamine release were Na+-independent, although substance P's inhibition of nicotine-induced catecholamine release was reduced by extracellular Na+. These in vitro studies suggest a similar role for substance P in vivo: substance P's protection against nicotinic desensitization may ensure a maintained output of adrenal catecholamines during stress, when the splanchnic nerve releases large amounts of acetylcholine.  相似文献   

9.
Various neuroendocrine factors known to be important in the regulation of adrenal catecholamine biosynthesis were investigated for possible effects on enkephalin-like immunoreactivity (Enk-IR) in the adrenal medulla of the rat. In normal rats, the adrenal chromaffin cells were not stained for either methionine (met-) or leucine (leu-) Enk-IR. Staining for Enk-IR appeared in many chromaffin cells following denervation of the adrenal or treatment of rats with the nicotinic receptor antagonists chlorisondamine or pempidine. These observations suggest that splanchnic nerve activity normally depresses the levels of enkephalin-like peptides in chromaffin cells through a trans-synaptic mechanism involving acetylcholine release and nicotinic receptor stimulation. Paradoxically, treatment with reserpine also increased Enk-IR in chromaffin cells. However, this increase did not appear to result from the well known effect of reserpine to increase presynaptic nerve firing and tyrosine hydroxylase (TOH) activity, since no increase in Enk-IR was observed following treatment with phenoxybenzamine or 6-hydroxydopamine, drugs which also increase TOH activity through trans-synaptic mechanisms. The reserpine effect also did not appear to be mediated by a stress-induced increase in glucocorticoid hormones since glucocorticoid therapy alone did not increase adrenal Enk-IR. It is suggested that the increase in adrenal Enk-IR following reserpine may result from a direct action of reserpine on chromaffin cells.  相似文献   

10.
A study of the effects of dihydropyridine Ca2+ channel modulators on the release of catecholamines from perfused rat adrenal glands, evoked by electrical stimulation of their splanchnic nerves, is presented. Electrically mediated secretory responses were compared to chemically mediated responses (exogenous acetylcholine, nicotine, or high K+). Intensities of stimuli were selected to produce quantitatively similar secretory responses (between 100 and 200 ng per stimulus). The main finding of the study is that responses to transmural stimulation (300 pulses at 1 or 10 Hz) and to acetylcholine were inhibited only partially (about 50%) by isradipine, an L-type Ca2+ channel blocker. In contrast, responses to high K+ (17.5 mM for 2 min) were highly sensitive to isradipine (IC50 = 8.2 nM). Responses to nicotine were also fully inhibited by this drug. Bay K 8644 (an L-type Ca2+ channel activator) potentiated mildly the secretory responses to electrical stimulation at 10 Hz and to acetylcholine, but increased threefold the responses to K+ and nicotine. It is, therefore, likely that responses mediated by high K+ or nicotinic receptors are triggered by external Ca2+ gaining access to the internal secretory machinery through L-type, dihydropyridine-sensitive voltage-dependent Ca2+ channels. However, in addition to nicotinic receptors, the physiological stimulation of adrenal medulla chromaffin cells through splanchnic nerves has other components, i.e., muscarinic receptor stimulation or the release of cotransmitters such as vasoactive intestinal polypeptide. The poorer sensitivity to dihydropyridines of secretory responses triggered by electrical stimulation of splanchnic nerve terminals or exogenous acetylcholine speaks in favor of alternative Ca2+ pathways, probably some dihydropyridine-resistant Ca2+ channels, in modulating the physiological adrenal catecholamine secretory process.  相似文献   

11.
Chromogranin A Synthesis and Secretion in Chromaffin Cells   总被引:3,自引:1,他引:2  
A sensitive and selective radioimmunoassay for chromogranin A (Chrg A) has been developed to quantitate content, release, and biosynthesis of this secretory protein in neuroendocrine tissues. An antiserum raised against Chrg A from bovine adrenal medulla was found to detect predominantly only the Mr 70-75 kilodalton Chrg A in its native form, allowing the use of this antiserum as a quantitatively specific probe for Chrg A in cell-free extracts of the adrenal medulla and chromaffin cells. Chrg A comprises about 10% of the total protein of the chromaffin cell. It is released in parallel with Met-enkephalin and catecholamines from the bovine chromaffin cell in primary culture in response to nicotine and nicotinic cholinergic agonists. From 14 to 22% of total Chrg A is released from the cell during a 15-min exposure to a maximally stimulatory dose of nicotine (10-100 microM). Chrg A release on nicotinic stimulation is blocked by D-600 and hexamethonium to the same extent as Met-enkephalin and catecholamine release. The parallel time course and percent release of Chrg A and Met-enkephalin indicate that these secretory polypeptides are contained in, and released from, functionally identical cellular compartments. Chrg A and Met-enkephalin pentapeptide sequences are present in the chromaffin cell at a ratio of about 2:1, although Chrg A is far more abundant on a mass basis. Chrg A and Met-enkephalin biosynthesis appear to be differentially regulated within the chromaffin cell, since chronic treatment of cells with nicotine and forskolin causes an elevation of Met-enkephalin pentapeptide without a concomitant elevation of intracellular levels of Chrg A.  相似文献   

12.
Abstract: In cultured bovine adrenal chromaffin cells, a nonselective protein kinase inhibitor, staurosporine, inhibits secretory function and induces neurite outgrowth. In the present study, effects of other nonselective protein kinase inhibitors (K-252a, H-7, and H-8) and reportedly selective protein kinase inhibitors (KN-62 and chelerythrine chloride) were examined on bovine adrenal chromaffin cell morphology, secretory function, and 45Ca2+ uptake. Treatment of chromaffin cells with 10 µ M K-252a, 50 µ M H-7, or 50 µ M H-8 induced changes in cell morphology within 3 h; these compounds also induced a time-dependent inhibition of stimulated catecholamine release. Chelerythrine chloride, a selective inhibitor of Ca2+/phospholipid-dependent protein kinase, did not induce outgrowth or inhibit secretory function under our treatment conditions. KN-62, a selective inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMK II), significantly inhibited stimulated catecholamine release (IC50 value of 0.32 µ M ), but had no effect on cell morphology. The reduction of secretory function induced by 1 µ M KN-62 was significant within 5 min and rapidly reversible. Unlike H-7, H-8, and staurosporine, KN-62 significantly inhibited stimulated 45Ca2+ uptake. KN-04, a structural analogue of KN-62 that does not inhibit CaMK II, inhibited stimulated 45Ca2+ uptake and catecholamine release like KN-62. These studies indicate that KN-62 inhibits secretory function via the direct blockade of activated Ca2+ influx. The nonselective inhibitors, K-252a, H-7, H-8, and staurosporine, inhibit secretory function by another mechanism, perhaps one involving alterations in the cytoskeleton.  相似文献   

13.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

14.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

15.
Neurosecretory cells including chromaffin cells possess a mesh of filamentous actin underneath the plasma membrane. We have proposed that the F-actin network acts as a barrier to the secretory vesicles blocking their access to exocytotic sites at the plasma membrane. Disassembly of cortical F-actin in chromaffin cells in response to stimulation is thought to allow the free movement of secretory vesicles to exocytotic sites. Moreover, experiments by us using morphometric analysis of resting and stimulated chromaffin cells together with membrane capacitance measurements have shown that cortical F-actin controls the traffic of vesicles from the vesicle reserve compartment to the release-ready vesicle compartment. The dynamics of the cortical F-actin is controlled by two pathways: A) stimulation-induced Ca(2+) entry and scinderin activation; and B) protein kinase C (PKC) activation and MARCKS (myristoylated alanine-rich C kinase substrate) phosphorylation. When chromaffin cells are stimulated through nicotinic receptors, cortical F-actin disassembly is mainly through the intervention of pathway A, since in the presence of PKC inhibitors, F-actin disassembly in response to cholinergic stimulation is only blocked by 20%. Pathway A involves the activation of scinderin by Ca(2+) with a consequent F-actin severing. Pathway B is fully activated by phorbol esters and in this case PKC blockers inhibit by 100% the disruption of cortical F-actin. This pathway operates through MARCKS. A peptide with amino acid sequence corresponding to the phosphorylation site domain of MARCKS, which also corresponds to its actin binding site, blocks PMA potentiation of Ca(2+)-induced catecholamine release. The results suggest that under physiological conditions (i.e., nicotinic receptor stimulation) pathway A is the principal mechanism for the control of cortical F-actin dynamic changes.  相似文献   

16.
Abstract: Adrenal chromaffin cells contain at least two subtypes of nicotinic acetylcholine receptors (nAChRs). These studies were designed to identify and characterize the subtype of nAChR mediating adrenal catecholamine release using the monoclonal antibody mAb35, which recognizes the α-subunit of muscle nAChRs and cross-reacts with some neuronal nAChRs. Immunocytochemical studies demonstrated that mAb35 interacts with specific sites on cultured chromaffin cells. Pretreatment with mAb35 reduced nAChR-stimulated catecholamine release (IC50 of ∼10 n M ). mAb35 had no effects on release stimulated through non-nAChR mechanisms. Unlike agonist-induced nAChR desensitization, the mAb35-induced reduction in nAChR-mediated secretion developed slowly. Although not immediately reversible, nAChR-stimulated release recovered after mAb35 removal. However, unlike recovery from agonist pretreatment, recovery from mAb35 pretreatment was relatively slow and was partially blocked by vinblastine. Hybridization of adrenal chromaffin RNA with a rat α3 cDNA revealed two strong bands and two fainter bands: two higher-molecular-weight bands, 6.9 and 8.5 kb; a strong band of 3.2 kb; and a lower amount of a 2.3-kb RNA. With recovery of nAChR function after agonist or mAb35 treatment, no significant effects on α3 subunit mRNA levels were seen. In summary, these studies demonstrate the presence of mAb35-nAChRs on adrenal chromaffin cells and provide evidence that these receptors represent the major population that regulates secretory events in adrenal chromaffin cells.  相似文献   

17.
The effect of angiotensin II on catecholamine release from bovine adrenal medulla has been investigated. In retrogradely perfused, isolated bovine adrenal glands, angiotensin II increased basal efflux of catecholamines, but the presence of angiotensin II did not increase the release of catecholamines evoked either by bolus injections of the secretagogue carbachol or by depolarization with a perfusing solution containing a raised concentration of K+. In chromaffin cells maintained in primary tissue culture, angiotensin II increased 3H release from cells preloaded with [3H]-noradrenaline but did not enhance the release evoked by carbachol or by depolarization with K+. The increase in 3H release evoked by angiotensin II from chromaffin cells in tissue culture was inhibited by its analogue antagonist Sar1,Ala8-angiotensin II (saralasin) and was entirely dependent on the presence of Ca2+ in the experimental medium. These findings suggest that, in the chromaffin cells of the bovine adrenal medulla, angiotensin II acts on specific receptors to cause a calcium-dependent catecholamine release but triggers no additional response that acts synergistically with depolarizing or nicotinic stimuli to augment catecholamine release.  相似文献   

18.
Abstract: The addition of either carbachol or muscarinic agonists to cultured bovine adrenal chromaffin cells results in a selective stimulation of phosphatidate (PhA) and phosphatidylinositol (PhI) labeling from 32Pi and [3H]glycerol that can be inhibited by the inclusion of atropine, but not d -tubocurarine. In contrast, increased catecholamine secretion is observed on the addition of carbachol or nicotinic agonists and is inhibited by d -tubocurarine but not by atropine. Added calcium is essential for catecholamine secretion but not for stimulated phospholipid labeling. Chelation of endogenous Ca2+ with EGTA does, however, inhibit the stimulated phospholipid labeling. These results suggest that stimulated phospholipid labeling in the bovine chromaffin cell and catecholamine secretion are separate and distinct processes.  相似文献   

19.
Abstract— Suspensions of isolated adrenal cells were prepared by digesting hamster adrenal glands with collagenase, and the secretion of catecholamine from these cells was studied. Acetylcholine (ACh) produces a dose-dependent increase in catecholamine secretion; half-maximal secretion is produced by 3 μm -ACh, and maximal secretion by 100 μm -ACh. The cholinergic receptor in these cells appears to be nicotinic, since catecholamine secretion is stimulated by the nicotinic agonists nicotine and dimeth-ylphenylpiperaziniurn, but not by the muscarinic agonists pilocarpine or oxotremorine. ACh-induced catecholamine secretion is inhibited by hexamethonium, tubocurarine, and atropine, but is not inhibited by α-bungarotoxin. ACh-induced catecholamine secretion is dependent upon the presence of extracellular Ca2+, and appears to occur by exocytosis, since the release of catecholamine is accompanied by the release of dopamine β-monooxygenase, but not of lactate dehydrogenase. These biochemical studies complement the morphological evidence for exocytosis in hamster adrenal glands, and indicate that catecholamine secretion from hamster chromaffin cells is similar to that from chromaffin cells of other species.  相似文献   

20.
In the study reported here we have reached two conclusions. First, the cat adrenal medulla chromaffin cell possesses a dopamine D1 receptor that seems to be coupled to an adenylyl cyclase. Second, this receptor regulates the muscarinic-mediated catecholamine release response through a negative feed-back loop which uses cyclic AMP as a second messenger. These conclusions are supported by the following findings: (i) SKF38393 (a selective D1 receptor agonist), but not quinpirole (a selective D2 agonist), inhibits the methacholine-mediated catecholamine release responses in a concentration-dependent manner (IC50 of around 1-2 microM). (ii) SCH23390 (a selective D1 antagonist), but not sulpiride (a selective D2 antagonist), reversed by 70% the inhibitory effects of SKF38393. (iii) Dibutyril cyclic AMP (500 microM) inhibited by 80% the secretory effects of methacholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号