首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of the electrophoretic migration patterns of proteins of active 40S and 60S ribosomal subunits isolated from nine amicronucleate strains of Tetrahymena of known phenoset revealed strain dependent differences which correlated with the phenoset classification of these strains as determined by Borden, Whitt & Nanney, who compared isoenzyme patterns.  相似文献   

2.
Free 80S ribosomes of eukaryotic organisms are dissociated by KCl (0.8–1.0 m) in the presence of 2-mercaptoethanol and magnesium ions (10–15mm); the large and small subunits so formed can be recombined to yield 80S monomers. We have now studied the ability of ribosomal subunits from protozoa (Tetrahymena pyriformis), fungi (Allomyces arbuscula, Saccharomyces cerevisiae), plants (pea, wheat), and mammals (rat, mouse, rabbit) to combine to form hybrid ribosomes. In general, both subunits of the species studied participate in the formation of hybrid particles, with the exception of the 60S subunit of Tetrahymena, which does not combine with the small subunit of fungal, plant, or mammalian ribosomes. The interaction of subunits from rat and Tetrahymena ribosomes has been visualized by an electron microscope study of negatively stained preparations. The base sequences of the ribosomal RNAs of these organisms have been compared to those of Saccharomyces by nucleic acid hybridization-competition.This work was supported by a fellowship #PF-529 from the American Cancer Society and by United States Public Health Service, National Institutes of Health grant GM 12449.  相似文献   

3.
Proteolytic degradation of ribosomal proteins occurs during the preparation of subunits of the cytoplasmic ribosomes of the protozoa Tetrahymena thermophila and the isolated subunits are inactive. Addition of 5 mM iodoacetamide to cell suspensions before extraction inhibits proteolytic activity and permits isolation of active subunits. The protein complements of these subunits have been characterized in two different two-dimensional electrophoretic systems, and their molecular weights have been determined.  相似文献   

4.
Extrachromosomal ribosomal RNA genes in Tetrahymena: structure and evolution   总被引:21,自引:0,他引:21  
The macronuclear ribosomal RNA genes from a number of strains within several species of Tetrahymena have been characterized. Restriction enzyme analysis revealed that individual strains all contained entirely homogeneous populations of extrachromosomal palindromic ribosomal DNA, varying in molecular size from 12 × 106 to 14 × 106 in different strains. Considering that the evolutionary distance among some of the species is estimated to be of the order of 106 years, the rDNA from all the species exhibited a strikingly high similarity in the localization of their restriction sites. Nevertheless, differences both inside and outside the gene region were clearly detectable, showing that the rDNA sequences have diverged in all species.Genetic polymorphism with respect to rDNA structure exists in Tetrahymena, but seems to be rare. In only two out of five species examined (T. borealis and T. pigmentosa) interbreeding strains differing in rDNA structure were found. While the differences detected in the T. borealis rDNA were confined to a small size difference located at the non-coding ends of the molecule, several differences were detected in the rDNA from the T. pigmentosa strains. One of the differences was shown to be due to the presence of an intervening sequence within the structural gene for 26 S rRNA in some of the strains. An intervening sequence of similar size located at the same position within the 26 S gene region was found by R-loop mapping in all strains of the species T. thermophila. Restriction enzyme analysis indicates that the rDNA from two other species contains a similar intervening sequence, and we therefore suggest that the size and localization of the intervening sequence is evolutionarily stable. The two intervening sequences examined so far, however, are not identical, as revealed by restriction enzyme mapping.  相似文献   

5.
6.
Chloroplast ribosomal proteins from spinach have been prepared in the presence of a protease inhibitor and some modifications have been introduced to the previous characterization of the 50S subunits (Mache et al., MGG, 177, 333, 1980): 33 ribosomal proteins are detected instead of 34. No change has been observed for the 30S subunits.Using a light-driven system of protein synthesis it is shown that up to ten ribosomal proteins of the 30S and eight proteins of the 50S subunits are made in the chloroplast.Newly synthesized ribosomal subunits have been analysed on CsCl gradients after sedimentation at equilibrium, allowing the separation of fully assembled subunits from incomplete ribosomal particles. Most of the newly made 50S subunits are fully assembled (=1.634). A small amount of incomplete 50S particles (=1.686) is detectable. Newly made 30S subunits (=1.598) and incomplete 30S particles (=1.691) are also observed. The ribosomal proteins of the incomplete 30S have been determined. They contain eight or nine of the 30S-proteins, seven of which are synthesized within the chloroplast. It is suggested that incomplete ribosomal particles resulted from a step in the assembly of ribosomal subunits.  相似文献   

7.
Summary Antisera prepared against purified Chlamydomonas reinhardi small chloroplast ribosomal subunit, judged homogenous by sucrose gradient velocity sedimentation and RNA gel electrophoresis was immunologically cross reactive with E. coli ribosomal proteins. The results of three different experimental approaches, namely Ouchterlony double diffusion, sucrose gradient velocity sedimentation and two dimensional crossed immunoelectrophoresis indicate that both E. coli ribosomal subunits and the chloroplast large ribosomal subunit contain proteins which show antigenic similarity to the chloroplast small ribosomal subunit proteins. However, cytoplasmic ribosomal subunits did not contain proteins which were cross reactive with immune antisera.  相似文献   

8.
Summary The ultrastructure of Drosophila melanogaster cytoplasmic ribosomal subunits and monomers have been examined by electron microscopy. The Drosophila ribosomal structures are compared to those determined for other eucaryotes and E. coli. Negatively contrasted images of 60S subunits are seen in the most frequent view to be approximately round particles about 280 Å in diameter. About 35% of the particles present a single prominent projection which we call the 60S peak. The peak emanates from a flattened region of the 60S subunit. The maximum observed length of the 60S peak is approximately 90Å. The Drosophila 60S peak is highly reminiscent of the E. coli L7/L12 stalk. The Drosophila 40S subunit is an elongated, slightly bent particle which measures 280×170×160 Å. It bears a strong resemblance to small ribosomal subunits of other eucaryotes and is strikingly similar to the E. coli 30S subunit. Micrographs of 80S monomeric ribosomes show the long axis of the 40S to be parallel and in apparent contact with the flattened region of 60S subunit. The 60S peak appears to bisect the long axis of the 40S subunit. The 40S subunit seems to be oriented in the monomeric ribosome so that the 40S projection is toward the body of the large subunit. Comparison of our data with similar studies in different organisms indicates that the eucaryotic large ribosomal subunits exhibit morphological heterogeneity while the small subunits remain remarkably similar.  相似文献   

9.
Mrp2 is a protein component of the small subunit of mitochondrial ribosomes in the yeast Saccharomyces cerevisiae. We have examined the expression of Mrp2 in yeast mutants lacking mitochondrial DNA and found that the steady-state level of Mrp2 is dramatically decreased relative to wild type. These data suggest that the accumulation of Mrp2 depends on the expression of one or more mitochondrial gene products. The mitochondrial genome of S. cerevisiae encodes two components of the small ribosomal subunit, 15S rRNA and the Var1 protein, both of which are necessary for the formation of mature 37S subunits. Several studies have shown that in the absence of Var1 incomplete subunits accumulate, which lack a limited number of ribosomal proteins. Here, we show that Mrp2 is one of the proteins absent from subunits lacking Var1, indicating that Var1 plays an important role in the incorporation of Mrp2 into mitochondrial ribosomal subunits.  相似文献   

10.
Ribosomes from the psychrotroph,Bacillus insolitus, were successfully dissociated into 30S and 50S ribosomal subunits, which were active in carrying out in vitro protein synthesis, measured by the poly U-directed incorporation of14C-l-phenylalanine into polyphenylalanine. As opposed to the undissociated ribosomes, which are heat sensitive (30°C), the dissociated ribosomes were not thermally sensitive. The heat-sensitive component(s) was found to be removed from the ribosomes during dissociation into 30S and 50S ribosomal subunits; when added back to the ribosomal subunits, heat sensitivity was conferred.  相似文献   

11.
SYNOPSIS. Strains of 3 unnamed mating groups of the Tetrahymena pyriformis complex have been subjected to starch gel electrophoresis followed by staining the gels for the enzymes isocitrate dehydrogenase (NADP), tyrosine aminotransferase, and tetrazolium oxidase (superoxide dismutase). With respect to the electrophoretic mobilities of these enzyme systems, the mating groups referred to here as 5, 13 and 14 are very similar to Tetrahymena americanis (syngen 2), the most common North American species of the complex. Cultures in our collection labeled Tetrahymena cosmopolitans (formerly syngen 4) are either amicronucleate, with unique isozyme patterns, or micronucleate cells which mate with and have isozyme patterns similar to Tetrahymena canadensis (syngen 7). Immature progeny have been derived from crosses between the latter strains and T. canadensis recently collected in Colorado. The amicronucleate strains are now placed in the Tetrahymena sp. category, and we conclude that strains identifiable as T. cosmopolitanis are no longer available. The reliability of isozymes as characters in ciliate taxonomy was evaluated by comparing the present results for 3 enzymes in 15 groups of strains (syngens and phenosets) that had been compared in an earlier study. These enzyme systems gave correlation coefficients (r) of 0.75 or higher in the separate studies, and can be considered useful diagnostic traits. Other enzymes that were present at threshold levels of detectability or varied highly in concentration from species to species are too unreliable to be of diagnostic value. Some of the strains in the complex are so evolutionarily divergent at the molecular level that we have difficulty finding growth and electrophoretic conditions under which orthologous enzyme activities can be detected simultaneously for all the strains being compared.  相似文献   

12.
Modification of 40S ribosomal subunits from Saccharomyces cerevisiae with dimethylmaleic anhydride (DMMA), a reagent for protein amino groups, is accompanied by loss of polypeptide-synthesizing activity and by dissociation of proteins from the particles. The protein-deficient ribosomal particles, originated from 40S subunits by treatment with dimethylmaleic anhydride at a molar ratio of reagent to particle of 250, can partially reconstitute active subunits upon addition of the corresponding released proteins, and regeneration of the modified amino groups.
  相似文献   

13.
In vitro conditions have been determined for obtaining ordered helical ribbons of small ribosomal subunits from Escherichia coli. These ribbons, suitable for study by three-dimensional reconstruction, are the first ordered arrays of ribosomes or ribosomal subunits to be produced in vitro.Although small ribosomal subunits remain in solution for extended periods (up to 6 months) during this procedure, their structural integrity, as assessed by acrylamide/agarose gel electrophoresis, by sucrose gradients, and by electron microscopy, is not significantly altered.Electron micrographs of ribbons of small subunits diffract to 60 Å resolution. Optical diffraction patterns suggest that adjacent subunits within helical ribbons are related by a 2-fold screw parallel to the long axis of the ribbon and the helical repeat distance measured from electron micrographs is 220 Å.  相似文献   

14.
Summary The amino-acid compositions of the mitochondrial ribosomal subunits of Saccharomyces cerevisiae have been determined and compared to those of cytoplasmic ribosomal subunits. For the large subunits, the mitochondrial and cytoplasmic ribosomes showed major differences in the proportions of arginine, alanine and methionine. For the small subunits, arginine, aspartic acid, alanine, valine and methionine showed marked differences.We have compared these amino-acid compositions with those already published of bacterial and eukaryotic ribosomes by a statistical method of data analysis. It appeared clearly that the yeast mitoribosomes are more distant from bacterial ribosomes than from eukaryotic cytoribosomes.Abbreviations r-proteins ribosomal proteins  相似文献   

15.
Summary Ribosomes are isolated from spinach plastids using conventional sucrose gradients. Their subunits are prepared by dissociation using low Mg2+ concentration.It is shown that plastid ribosomes are able to bind f-met-tRNA in the presence of the initiation factors from E. coli.The characterization of ribosomal proteins is carried out using the four two-dimensional gel electrophoretic systems of Madjar et al. (1979). The 30 S and 50 S subunits contain 24 and 34 ribosomal poteins, respectively. These proteins are found in the 70S monosomes which also contain most often nine additional faintly stained proteins.  相似文献   

16.
The small ribosomal subunit of the halophilic archaeon Haloferax mediterranei has been reconstituted from its dissociated rRNA and protein components. Efficient reconstitution of particles, fully active in poly(U)-dependent polyphenylalanine synthesis, occurs after 2 h of incubation at 36°C in the presence of l.5 M of (NH4)2SO4 100 mM of MgAc2, 20 mM Tris-HCI (pH 8.2) and 6 mM 2-mercaptoethanol. Important differences in the optimal ionic conditions for the reconstitution of the 30S and the 50S ribosomal subunits from Haloferax mediterranei have been found. K+ and NH4+ ions have differing abilities to promote the reconstitution of the particles. The assembly of 30S ribosomal subunits of H. mediterranei has a higher tolerance to ionic strength than the assembly of the 50S subunits and it is independent of the Mg2+concentration present in the system.  相似文献   

17.
Summary Selected strains of Saccharomyces cerevisiae were mutagenised with nitrosoguanidine and temperature-sensitive mutants isolated. These mutants were screened by twodimensional gel-electrophoresis for the presence of ribosomal proteins with altered mobility relative to parental preparations. Electrophoretic changes were detected in three mutants designated ts205, ts212 and ts417, with the alterations apparently the same in the three cases. All three mutants were more sensitive than were their parents to the antibiotics G418, hygromycin B and MDMP. Mutant ts212 has an abnormal distribution of native ribosomal subunits and appears to be defective in its assembly of the smaller subparticle.  相似文献   

18.
Summary Due to the absence of repetition of the rRNA genes in S. cerevisiae mitochondria, isolation of ribosomal mutants at the level of the rRNA genes is relatively easy in this system. We describe here a novel thermosensitive mutation, ts1297, localized by rho- deletion mapping in (or very close to) the sequence corresponding to the small ribosomal RNA (15S) gene. Defective mutations of the small rRNA have not been reported so far.In the mutant, the amount of 15S rRNA and of the small ribosomal subunit, 37S, is reduced. The quantity of the large ribosomal RNA (21S), directly extracted from mitochondria, appears normal. However, the large ribosomal subunit, 50S, seems to be fragile and could be recovered only in the presence of Ca2+ in place of Mg2+. The 50S particles seem to be completely degraded under normal conditions of extraction with Mg2+.The thermosensitive phenotype of the ts1297 mutant is suppressed by a nuclear mutation SU101. The SU101 mutation had been originally isolated as a suppressor of another mitochondrial mutation, ts902, which is located within the 21S rRNA gene.These results suggest that the mitochondrial mutations ts1297 and ts902 are both involved in the interaction of the large and small ribosomal subunits.  相似文献   

19.
1. 70 S ribosomes isolated from strains of Escherichia coli 113-3, K12 and B take part in vitamin B-12 biosynthesis from AdoCbi-GDP, NAD and dimethylbenzimidazole in the presence of enzymes of the cytosol fraction. 2. 70 S ribosomes from E. coli 113-3 bind Ado[58Co]Cbi-GDP. This reaction is independent of fusidic acid. 3. Proteins from 5 S RNA complex as well as L2 protein isolated from E. coli 113-3 ribosomes catalyze vitamin B-12 biosynthesis. The main catalytic function in this reaction is performed by protein L18.4. Vitamin B-12 biosynthesis proceeding in the presence of isolated ribosomal proteins is inhibited by fusidic acid, chloramphenicol and vernamycin but not by erythromycin. 5. Vitamin B-12 synthesized in the presence of isolated ribosomal proteins is biologically active.  相似文献   

20.
Using double labelling protocols we have compared the developmental metabolism of ribosomal subunits fabricated during vegetative growth of Dictyostelium discoideum with those accumulated during subsequent development. Unlike vegetative growth when ribosomal subunits are accumulated in equal amounts, early development is characterized by the accumulation of approximately twice as much large as small subunit. The unusual paucity of small subunit was not due to selective sequestration by the nucleus as previously thought nor cytoplasmic degradation. Ribosomal subunits, whether synthesized during growth or development, were degraded at equivalent rates by the developing cell indicating the lack of preferential conservation at the degradative level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号