首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic beta-glucans of members of the family Rhizobiaceae.   总被引:13,自引:1,他引:12       下载免费PDF全文
Cyclic beta-glucans are low-molecular-weight cell surface carbohydrates that are found almost exclusively in bacteria of the Rhizobiaceae family. These glucans are major cellular constituents, and under certain culture conditions their levels may reach up to 20% of the total cellular dry weight. In Agrobacterium and Rhizobium species, these molecules contain between 17 and 40 glucose residues linked solely by beta-(1,2) glycosidic bonds. In Bradyrhizobium species, the cyclic beta-glucans are smaller (10 to 13 glucose residues) and contain glucose linked by both beta-(1,6) and beta-(1,3) glycosidic bonds. In some rhizobial strains, the cyclic beta-glucans are unsubstituted, whereas in other rhizobia these molecules may become highly substituted with moieties such as sn-1-phosphoglycerol. To date, two genetic loci specifically associated with cyclic beta-glucan biosynthesis have been identified in Rhizobium (ndvA and ndvB) and Agrobacterium (chvA and chvB) species. Mutants with mutations at these loci have been shown to be impaired in their ability to grow in hypoosmotic media, have numerous alterations in their cell surface properties, and are also impaired in their ability to infect plants. The present review will examine the structure and occurrence of the cyclic beta-glucans in a variety of species of the Rhizobiaceae. The possible functions of these unique molecules in the free-living bacteria as well as during plant infection will be discussed.  相似文献   

2.
BACKGROUND: Williopsis saturnus var. mrakii MUCL 41968 secretes a 85-kDa glycoprotein killer toxin (WmKT) that displays a cytocidal activity against a wide range of microorganisms, making WmKT a promising candidate for the development of new antimicrobial molecules. Although the killing mechanism of WmKT is still unknown, the toxin was recently proposed to bind to the surface of sensitive microorganisms through the recognition of beta-glucans. Indeed, Saccharomyces cerevisiae strains sensitive to the toxin become resistant when mutated in their beta-glucan synthesis pathway. MATERIALS AND METHODS: To investigate the interaction of WmKT with beta-glucans, we examined in agar diffusion assays the WmKT activity in the presence of enzymes displaying beta-glucanase activity. The toxin activity was also investigated using spheroplasts derived from sensitive yeast cells. The hydrolytic activity of WmKT was studied using specific glucosidase inhibitors as well as various sugar molecules covalently linked to p-nitrophenyl as potential substrates. Finally, the ultrastructural modifications induced by WmKT activity on sensitive yeasts were assessed by scanning electron microscopy. RESULTS: The data reported here support the hypothesis that WmKT binds to sensitive cells using surface-exposed beta-glucans. Indeed beta-glucanase exerts an antagonistic effect on WmKT activity and spheroplasts derived from WmKT-sensitive yeast cells are shown to be resistant to WmKT, suggesting that cell wall beta-glucans are required for WmKT lethal effect. Because WmKT exhibits amino acid sequence similarities with proteins suspected to be glucanase, we also investigated the effect of castanospermine, a potent glucosidase inhibitor, on WmKT activity. Castanospermine completely abolished WmKT killer activity as well as its hydrolytic enzymatic activity against p-nitrophenyl beta-D-glucopyranoside. The scanning electron microscopy analysis of sensitive yeast cells treated with the toxin reveals that WmKT causes cell wall modifications similar to those observed with zymolyase. CONCLUSION: The results reported in this study show that WmKT activity requires an interaction between the mycocin and the cell wall beta-glucans. Moreover, they indicate that WmKT acts on sensitive yeast cells through a hydrolytic activity directed against cell wall beta-glucans that disrupts the yeast cell wall integrity leading to death.  相似文献   

3.
The use of immunostimulants has received increased attention due to the discovery of Toll-like receptors (TLR) or/and pattern recognition receptors (PRR). These receptors have been found to bind molecules from a range of pathogens including self-molecules. When cell damage has occurred many of the released molecular structures act as so-called "danger" signals possessing pathogen-associated molecular patterns (PAMP). These danger signals often consist of repeating molecular moieties yielding high molecular weight compounds. Examples are beta-glucans and CpG containing DNA, but some danger signals possess low molecular weight structures. It has been found that the PRR bind unit structures of PAMP, and that PAMP-binding involves several other humoral and cell membrane proteins, exemplified by the more or less simultaneous LPS recognition displayed by MD-2, CD-14 and TLR4 on the cell membrane. Also, the binding of beta-glucans has been shown to include several different cell membrane receptors. Several immunostimulants are commercially exploited in aquaculture as feed additives. This applies to beta-glucans, alginates and nucleotides. Despite their use as feed additives no targeted approach has been conducted to include PAMP as adjuvants in fish vaccines. Interestingly, most of the PAMP studied activate antigen-presenting cells together with na?ve T cells into dendritic cells and Th1 or Th2 cells [1]. In turn, this may activate Th1 and Th2 immune responses with production of Th1 or Th2 signature molecules such as IFN-gamma and IL-4, respectively [2-4]. This review will mainly focus on binding characteristics of beta-glucans, their effects on T helper cell differentiation, effects on functional levels, gene expression profiles and application of the commonly used ss-glucan in the aquaculture sector. In addition, ss-glucans show promises in shrimp aquaculture by inducing disease resistance, this review will also highlight the use and the effects of beta-glucans in experimental models.  相似文献   

4.
1,3-1,4-beta-Glucanases (or lichenases, EC 3.2.1.73) hydrolyse linear beta-glucans containing beta-1,3 and beta-1,4 linkages such as cereal beta-glucans and lichenan, with a strict cleavage specificity for beta-1,4 glycosidic bonds on 3-O-substituted glucosyl residues. The bacterial enzymes are retaining glycosyl hydrolases of family 16 with a jellyroll beta-sandwich fold and a substrate binding cleft composed of six subsites. The present paper reviews the structure-function aspects of the enzymatic action including mechanistic enzymology, protein engineering and X-ray crystallographic studies.  相似文献   

5.
The anti-infectious potential of a selection of putative immunostimulants including six commercial beta-glucans (all extracted from baker's yeast Saccharomyces cerevisiae except for Laminarin) and chitin particles were verified in Artemia nauplii by challenging them under gnotobiotic conditions with the pathogen Vibrio campbellii. Under the described experimental conditions, no differential macroscopic nutritional effect (e.g. growth) was observed among the products. Significant increased survival was observed with beta-glucan (Sigma) and Zymosan and to a lesser extent with MacroGard in challenged nauplii. A poor correlation was found between survival values of the challenged Artemia and the product compositions (such as chitin, mannose and beta-glucan content) indicating that the quality of beta-glucans (e.g. the ratio of beta-1,3 and beta-1,6 glucan, the molecular weight, the dimensional structure, type and frequency of branches), eventually in combination with other unidentified compounds, is more important than the amount of product offered. This small-scale testing under gnotobiotic conditions using freshly hatched Artemia nauplii allows for a rapid and simultaneous screening of anti-infectious and/or putative immunostimulatory polymers, and should be combined with studies on cellular and humoral immune responses in order to gain more quantitative insight into their functional properties.  相似文献   

6.
The effects of beta-glucans on several immune functions of carpet shell clam (Ruditapes decussatus) and Mediterranean mussel (Mytilus galloprovincialis) hemocytes were determined. Nitric oxide (NO) production increased significantly in beta-glucan treated mussels and clams. In mussels, beta-glucans increased by themselves the release of free oxygen radicals and also were able to enhance the phorbol 12-myristate 13-acetate (PMA) mediated effect on this hemocyte activity. However, high doses of beta-glucans when combined with zymosan decreased this respiratory burst. In clams, hemolymph treated with several doses of beta-glucans limited the growth of the three bacteria, Vibrio algynolyticus (strain TA15), Vibrio splendidus (strain TA2) and Escherichia coli (strain ATCC 13706). This modulation on the antibacterial activity, however, was not observed when mussel hemolymph was incubated with beta-glucans. These results suggest that the immune responses of these animals can be up and down modulated by external stimuli and, although clams and mussels are both relatively closely related species, their behaviour concerning immune responses can be different.  相似文献   

7.
T Daum  M S Rohrbach 《FEBS letters》1992,309(2):119-122
Zymosan, which is composed primarily of alpha-mannan and beta-glucan polymers, is a well recognized activator of macrophages. The type receptor by which unopsonized zymosan induces arachidonic acid release was investigated. It was found that particulate beta-glucan and zymosan stimulated an identical dose-dependent release of arachidonic acid. This release of arachidonic acid by zymosan was blocked by soluble beta-glucans whereas soluble mannan had no effect. This inhibition was not due to a general toxic effect of the soluble beta-glucans as they had no effect on calcium ionophore-induced release of arachidonic acid. Beta-glucan-induced fatty acid release from these cells was shown to be fairly specific for arachidonic acid. These data reveal that zymosan stimulates the specific release of arachidonic acid from rabbit alveolar macrophages, at least in part, via a beta-glucan receptor.  相似文献   

8.
Dectin-1 is a specific receptor for beta-glucans and a major receptor for fungal particles on macrophages (Mphi). It is a type II membrane receptor that has a C-terminal, NK-like, C-type lectin-like domain separated from the cell membrane by a short stalk region and a cytoplasmic immunoreceptor tyrosine-based activation-like motif. We observed functional differences in dectin-1-dependent recognition of fungal particles by Mphi from different mouse strains. RT-PCR analysis revealed that mice have at least two splice forms of dectin-1, generated by differential usage of exon 3, encoding the full-length dectin-1A and a stalkless Mphi dectin-1B. Mphi from BALB/c mice and genetically related mice expressed both isoforms in similar amounts, whereas Mphi from C57BL/6 and related mice mainly expressed the smaller isoform. NIH-3T3 fibroblast and RAW264.7 macrophage cell lines stably expressing either isoform were able to bind and phagocytose zymosan at 37 degrees C. However, binding by the smaller dectin-1B isoform was significantly affected at lower temperatures. These properties were shared by the equivalent human isoforms. The relative ability of each of the isoforms to induce TNF-alpha production in RAW264.7 Mphi was also found to be different. These results are the first evidence that dectin-1 isoforms are functionally distinct and indicate that differential isoform usage may represent a mechanism of regulating cellular responses to beta-glucans.  相似文献   

9.
Respiratory failure during Pneumocystis pneumonia is mainly a consequence of exaggerated inflammatory responses to the organism. Dendritic cells (DCs) are the most potent APCs in the lung and are key to the regulation of innate and adaptive immune responses. However, their participation in the inflammatory response directed against Pneumocystis infection has not been fully elucidated. Therefore, we studied the role of Pneumocystis carinii, as well as Saccharomyces cerevisiae, cell wall-derived beta-glucans, in DC costimulatory molecule expression. We further studied the impact of beta-glucans on subsequent T cell activation. Because cytokine secretion by DCs has recently been shown to be regulated by Fas ligand (FasL), its role in beta-glucan activation of DCs was also investigated. beta-Glucan-induced DC activation occurred in part through dectin-1 receptors. We demonstrated that DC activation by beta-glucans elicits T cell activation and polarization into a Th1 patterned response, but with the conspicuous absence of IL-12. These observations differed from LPS-driven T cell polarization, suggesting that beta-glucans and LPS signal DC activation through different mechanisms. We additionally determined that IL-1beta and TNF-alpha secretion by beta-glucan-stimulated DCs was partially regulated by Fas-FasL. This suggests that dysregulation of FasL could further enhance exuberant and prolonged cytokine production by DCs following DC-T cell interactions, further promoting lung inflammation typical of Pneumocystis pneumonia.  相似文献   

10.
In invertebrates the defence system to fight infectious diseases depends mainly on a non-specific or innate immune response, contrary to the vertebrate immune system. The use of natural immunostimulants that enhance the defence mechanism or the immune response of target organisms may be an excellent preventive tool against pathogens. Several strains of baker's yeast Saccharomyces cerevisiae have been found to be good immune enhancers. Previously, it was shown that small quantities of the mnn9 yeast cells and/or glucan particles could protect Artemia nauplii against the pathogenic bacterium Vibrio campbellii in the gnotobiotic Artemia challenge test. Apparently, the higher amount and/or availability of beta-glucans and/or chitin present in mnn9 yeast strain might play an essential role in such protection. The present study reveals that these compounds could only provide protection against the pathogen when they were supplied to Artemia well in advance of the challenge (8-48 h depending on the source). Also the putative immunostimulant did not have a curative action. Moreover, short-time exposure of Artemia to mnn9 strain (priming) did not provide protection against the pathogen longer than two days. Hence, it is hypothesized that the mere stimulation of known biochemical pathways, e.g. prophenoloxidase is not sufficient to explain the mechanisms involved in the observed immunostimulation obtained by beta-glucans and/or mnn9 yeast in Artemia nauplii.  相似文献   

11.
Inhalation of fungal spores (conidia) occurs commonly and, in specific circumstances, can result in invasive disease. We investigated the murine inflammatory response to conidia of Aspergillus fumigatus, the most common invasive mold in immunocompromised hosts. In contrast to dormant spores, germinating conidia induce neutrophil recruitment to the airways and TNF-alpha/MIP-2 secretion by alveolar macrophages. Fungal beta-glucans act as a trigger for the induction of these inflammatory responses through their time-dependent exposure on the surface of germinating conidia. Dectin-1, an innate immune receptor that recognizes fungal beta-glucans, is recruited in vivo to alveolar macrophage phagosomes that have internalized conidia with exposed beta-glucans. Antibody-mediated blockade of Dectin-1 partially inhibits TNF-alpha/MIP-2 induction by metabolically active conidia. TLR-2- and MyD88-mediated signals provide an additive contribution to macrophage activation by germinating conidia. Selective responsiveness to germinating conidia provides the innate immune system with a mechanism to restrict inflammatory responses to metabolically active, potentially invasive fungal spores.  相似文献   

12.
The recognition of conserved microbial structures is a key aspect of metazoan immunity, and beta-glucans are emerging as a major target for the recognition of fungal pathogens. A number of receptors for these carbohydrates have been identified, which upon recognition, trigger a variety of immune responses. In contrast to many other systems, there is little apparent conservation in these mechanisms between vertebrates and invertebrates. In this review, we will highlight all the known receptors for beta-glucans and will discuss the various immune responses they can initiate, with reference to fungal infection, in both vertebrates and invertebrates.  相似文献   

13.
A Clostridium thermocellum gene (licB) encoding a thermoactive 1,3-1,4-beta-glucanase (lichenase) with a molecular weight of about 35,000 was localized on a 1.5-kb DNA fragment by cloning and expression in E. coli. The enzyme acts on beta-glucans with alternating beta-1,3- and beta-1,4-linkages such as barley beta-glucan and lichenan, but not on beta-glucans containing only 1,3- or 1,4-glucosidic bonds. It is active over a broad pH range (pH 5-12) and has a temperature optimum around 80 degrees C. The C. thermocellum lichenase is unusually resistant against inactivation by heat, ethanol or ionic detergents. These properties make the enzyme highly suitable for industrial application in the mashing process of beer brewing.  相似文献   

14.
Li W  Wang Q  Cui SW  Burchard W  Yada R 《Carbohydrate research》2007,342(11):1434-1441
Cereal beta-glucans can form aggregates in aqueous solution. The presence of aggregates in cereal beta-glucan solutions led to inaccurate determination of molecular weights and it was believed that intermolecular hydrogen bonding caused the aggregation. To eliminate aggregates, a carbanilation method for molecular weight determination of cereal beta-glucans was developed. Wheat beta-glucan samples were selected for investigation. The carbanilation method can prevent intermolecular hydrogen bonding by blocking hydroxyl groups with phenyl carbamate groups. The carbanilates of cereal beta-glucans were prepared by the reaction of cereal beta-glucans with phenylisocyanate catalyzed by DMSO and pyridine. To avoid degradation during the carbanilation reaction, relatively mild conditions were used, which led to incomplete substitution (DS: approximately 2). However, after the carbanilation reaction, the carbanilates dissolved completely in 1,4-dioxane solution without any detectable aggregates, which allowed accurate molecular weight determination. The degree of substitution (DS) of carbanilates was determined by both a nitrogen content method and an FT-IR method. The FT-IR method proved to be the more effective for DS estimation. Using this method, the converted molecular weights of cereal beta-glucans were in good agreement with the results measured in 0.5M NaOH solution, which previously was shown to be a good solvent for cereal beta-glucans. After the carbanilation reaction, conformational changes of carbanilates were studied by static and dynamic light scattering techniques. The fractal dimension (d(f)=2.27) and the structure sensitive parameters (rho >2) suggested a porous globular structure for partially carbanilated beta-glucans.  相似文献   

15.
The rumen: a unique source of enzymes for enhancing livestock production   总被引:11,自引:0,他引:11  
Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. One particularly promising technology is feeding enzymes as supplements for animal diets. Supplementation of diets for non-ruminants (e.g., swine and poultry) with fibrolytic enzymes, such as cellulases, xylanases and beta-glucanases, increases the feed conversion efficiency and growth rate of the animals. Enzymatic hydrolysis of plant cell wall polymers (e.g., cellulose, xylan, beta-glucans) releases glucose and xylose and eliminates the antinutritional effects of beta-glucans and arabinoxylans. Enzyme supplementation of diets for ruminants has also been shown to improve growth performance, even though the rumen itself represents the most potent fibrolytic fermentation system known. Implementation of this technology in the livestock industry has been limited largely because of the cost of development and production of enzymes. Over the last decade, however, developments in recombinant DNA technology have increased the efficiency of existing microbial production systems and facilitated exploitation of alternative sources of industrial enzymes. The ruminal ecosystem is among the novel enzyme sources currently being explored. Understanding the role of enzymes in feed digestion through characterization of the enzymology and genetics involved in digestion of feedstuffs by ruminants will provide insight required to improve the products currently available to producers. Characterization of genes encoding a variety of hydrolytic enzymes, such as cellulases, xylanases, beta-glucanases, amylases, pectinases, proteases, phytases and tannases, will foster the development of more efficacious enzyme supplements and enzyme expression systems for enhancing nutrient utilization by domestic animals. Characteristics of the original source organism need no longer restrict the production of a useful enzyme. Recent reports of transgenic plants expressing fibrolytic or phytase activity and of transgenic mice able to produce endoglucanase in the pancreas speak to the feasibility of improving feed digestion through genetic modification of the feedstuffs and the animals.  相似文献   

16.
The murine molecule dectin-1 (known as the beta-glucan receptor in humans) is an immune cell surface receptor implicated in the immunological defense against fungal pathogens. Sequence analysis has indicated that the dectin-1 extracellular domain is a C-type lectin-like domain, and functional studies have established that it binds fungal beta-glucans. We report several dectin-1 crystal structures, including a high-resolution structure and a 2.8 angstroms resolution structure in which a short soaked natural beta-glucan is trapped in the crystal lattice. In vitro characterization of dectin-1 in the presence of its natural ligand indicates higher-order complex formation between dectin-1 and beta-glucans. These combined structural and biophysical data considerably extend the current knowledge of dectin-1 structure and function, and suggest potential mechanisms of defense against fungal pathogens.  相似文献   

17.
The use of new preventive approaches such as immunostimulants to reduce stress and mortalities, to maintain good health of cultured organisms and to stimulate the non-specific defence mechanism, is becoming increasingly important in aquaculture. Yet detailed analysis reveals that in most experiments the validity of some conclusions with respect to the benefit of immunostimulation is still doubtful, especially in invertebrates. The use of standardized trials under controlled rearing conditions, complemented with fundamental research on defence mechanisms can provide unequivocal evidence for the beneficial effects of immunostimulants in reducing invertebrate susceptibility to diseases or infections. This study investigated the use of small amounts of baker's yeast Saccharomyces cerevisiae and glucan particles (obtained from baker's yeast) in gnotobiotic Artemia to overcome the pathogenicity of two organisms: Vibrio campbellii and V proteolyticus. Artemia supplemented with small quantities of a yeast strain presenting higher concentrations of beta-glucans or with glucan particles seemed to completely resist the detrimental effects of both pathogens. The higher amount and/or availability of beta-glucans in that yeast might play an essential role in such protection, as most probably glucans stimulate the immune response of the nauplii.  相似文献   

18.
19.
E G Cosio  T Frey  J Ebel 《FEBS letters》1990,264(2):235-238
Soybean membranes contain high-affinity binding sites for fungal beta-glucans. These sites may play a role in the recognition by soybean tissues of fungal phytoalexin elicitors. We have solubilized beta-glucan-binding activity from microsomal membranes using two C12-alkyl zwitterionic detergents, Zwittergent 3-12 (ZW 3-12) and the lysolecithin analog 1-dodecanoyl propanediol-3-phosphorylcholine [corrected] (ES12H). The solubilized binding sites displayed identical affinity for beta-glucans as that found in membranes (KD = 11-34 nM). Detergent-protein micelles with glucan binding activity eluted with approximate Mr values of 300,000 in ZW 3-12 and 380,000 in ES12H in gel permeation chromatography. Maximal binding activity eluted from a chromatofocusing column in the pH range between 6.2 and 6.6 with both ES12H and ZW 3-12, suggesting an apparent pI close to neutral.  相似文献   

20.
The trypsin-sensitive receptor that mediates phagocytosis of unopsonized zymosan particles by human monocytes has been designated as a beta-glucan receptor because of its functional inhibition by specific algal and plant beta-glucans. Soluble ligands that are chemically and structurally identical to beta-glucan constituents of zymosan were isolated from a carbohydrate-enriched fraction of yeast extract by sequential chromatography on DE-cellulose, SP-Sephadex, and Con A-Sepharose. Preincubation of adherent human monocytes with 278, 210, and 2.5 micrograms/ml hexose equivalents in pooled chromatographic fractions from DE-cellulose, SP-Sephadex, and Con A-Sepharose, respectively, effected 50% reductions in subsequent phagocytosis of zymosan particles without affecting Fc-mediated ingestion of IgG-coated sheep erythrocytes (ESIgG). The purified yeast extract-derived beta-glucans, which contained 92% glucose and 8% mannose by gas chromatographic analysis and eluted from a Sephacryl S-200 column as a broad peak with a Kav of 0.39 and estimated molecular sizes of from 20,000 to 70,000 m.w., required only 3.5 +/- 0.9 micrograms/ml (mean +/- SD, n = 6), as compared with 31.5 micrograms/ml of the algal beta-glucan laminarin to achieve 50% decreases in zymosan ingestion. Alternatively, soluble yeast beta-glucans with estimated molecular sizes of from 2 X 10(5) to 2 X 10(6) were prepared from yeast glucan particles, which contained 98% glucose and 0% mannose, by sonication and sequential centrifugation at 15,000 and 100,000 X G for 30 and 60 min, respectively. Monocyte ingestion of zymosan was reduced by 50% by pretreatment with 60 ng/ml of the soluble beta-glucans in 15,000 X G supernatants, whereas ingestion of ESIgG was unaffected by as much as 50 micrograms/ml of this material. Partial acid hydrolysis of soluble glucan-derived beta-glucans in 15,000 X G supernatants followed by gel filtration on Bio-Gel P-4 revealed two well-defined peaks within the inclusion volume of the column with phagocytosis-inhibiting activity. Oligoglucosides that eluted at a Kav of 0.46 had an estimated molecular size of 2,000 m.w. and effected a 48% reduction in zymosan ingestion at inputs of 2 to 5 micrograms/ml, and smaller oligoglucosides with a Kav of 0.82 and an estimated molecular size of 1,000 m.w. effected a 50% reduction at inputs of 25 micrograms/ml. Preincubation of monocytes for 2 min with 25 micrograms/ml of the oligoglucosides with estimated molecular size of 1,000 m.w. and with 50 ng/ml of soluble glucan-derived beta-glucans in 100,000 X G supernatants reduced zymosan ingestion by 41% +/- 4 and 44% +/- 3 (mean +/- SD, n = 3), respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号