首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxygen-sensitive stages of the cell cycle of human diploid cells   总被引:3,自引:0,他引:3       下载免费PDF全文
We had established that growth of human diploid WI-38 cells is reversibly inhibited by elevated partial pressures of oxygen (PO2) and we were interested in determining where in the cell cycle growth was delayed. A technique combining cytospectrophotometry and autoradiography was used to determine cell cycle parameters. Confluent cells that were subcultivated and exposed to a PO2 of 365 +/- 8 mm Hg were delayed primarily after DNA synthesis but before metaphase. At a PO2 of 590 +/- 35 mm Hg, most cells did not initiate DNA synthesis, and the few that did, failed to complete the process. When exponentially growing cells that had already begun DNA synthesis were exposed to a PO2 of 590 p 35 mm Hg, they accumulated after completing DNA synthesis but before initiating mitosis. The rate at which (3H)thymidine was incorporated into DNA was inversely correlated with oxygen tension (PO2 of 135--590 mm Hg). These results suggest that the process most sensitive to oxygen causes cells to be delayed after DNA synthesis but before metaphase. Slightly higher PO2's were needed to inhibit the initiation of DNA synthesis. Further, the rate of DNA synthesis is decreased by elevated oxygen tensions.  相似文献   

2.
Basal antioxidant defense levels are often aberrant in tumor cells; however, less attention has been given to differences in the way that normal and transformed cells respond to changes in oxidative stress. This study evaluated differences in the responses of various normal and transformed cell lines to different oxygen tensions. Exposure to hyperoxia generally failed to induce either the activity of GSH peroxidase (GPx) or the manganese-containing form of superoxide dismutase (MnSOD) after 48 h, although at 605 mm Hg oxygen, small inductions of MnSOD activity were observed in adult lung fibroblasts and amelanotic melanoma. Exposure to 605 mm Hg O2 for 48 h was inhibitory to GPx activity. MnSOD activity was strongly induced in virally transformed WI-38 cells by treatment with the herbicide paraquat or inhibition of GSH synthesis with BSO. In normal cells GSH concentration was proportional to ambient oxygen tension. Tumor cells exhibited greater GSH concentrations at low oxygen tensions than normal cells but were unable to increase GSH in response to elevation of oxygen tension. These results reveal differences in tumor and normal cell responses to changes in ambient oxygen tension and show that MnSOD activity is inducible when an appropriate stimulus is applied.  相似文献   

3.
Oxygen modulates the growth of skin fibroblasts   总被引:4,自引:0,他引:4  
Elevated oxygen tensions are inhibitory to the growth of skin fibroblasts. Skin fibroblasts grow better at oxygen tensions below 137 mm Hg regardless of seeding density. A wide range of oxygen tensions, including those in the physiological range, strongly modulate the growth of human skin fibroblasts. There were no significant differences between the responses of fetal and postnatal cell lines to changes in ambient oxygen tension. In all cases, higher oxygen tensions significantly impeded cell growth. Seeding cells at 10(4) cells/cm(2) afforded some protection from the deleterious effects of hyperoxia. Oxygen tensions exceeding the amount present in ambient room air also impeded cell growth at this higher seeding density, but the effect did not become significant until the oxygen partial pressure reached 241 mm Hg. At lower oxygen tensions, cells seeded at 10(3) cells/cm(2) grew more rapidly than did cells seeded at 10(4) cells/cm(2). These findings may have implications for the treatment of poorly healing wounds with hyperbaric oxygen.  相似文献   

4.
Various concentrations of oxygen were used to determine the optimum culture medium PO2 for survival and proliferation of attached human and mouse fibroblasts grown from different inoculum sizes. When T-15 flasks were seeded with less than or equal to 2 X 10(4) cells (less than or equal to 1.3 X 10(3) cells/cm2), the highest plating efficiencies and cell yields were obtained with a culture medium PO2 of 40-60 mm Hg. At higher inoculum sizes (10(5) cells per T-15) used routinely for mass cultured, no difference in cell yield or glycolytic activity was observed between cultures gassed with atmospheric, i.e., 18% O2 (growth medium PO2 approximately equal to 125-135 mm Hg) and those gassed with 1% O2 (growth medium PO2 approximately euqal to 40-60 mm Hg). The enhanced clonal growth observed at the latter PO2 results from an increased proliferation rate rather than more efficient attachment and survival of inoculated cells. Glucose uptake and lactic acid accumulation were increased in sparse cultures sparged with 1% O2. A slight extension of lifespan was observed in WI-38 cells serially subcultured with a gas phase of 1% O2.  相似文献   

5.
For the human diploid cell lines WI-38 and WI-26, the percentage of cells able to incorporate 3H-TdR into their nuclei under standard conditions declines as a function of either elapsed calendar time or the number of population doublings. The rate of decline varies for each population depending on its overall lifespan. If, however, the percent of labelled nuclei is considered as a function of the percent of lifespan completed (i.e., the number of population doublings at time t/total number of population doublings attained during lifespan of the culture), a highly reproducible relationship is found. Using 10% class intervals for the incidence of labelled nuclei, it is possible to distinguish the ‘age’ of populations which differ by about 5 passages or less. With this simple technique, one can evaluate simultaneously and in a reproducible way the current age of the culture, as well as the remaining proliferative capacity of the population.  相似文献   

6.
The volume of culture medium in which WI38 cells are grown affects the maximum cell number at stationary phase and in the vitro lifespan in terms of total population doublings. The saturation density at 0.53 ml/cm2 (40 ml/T-75) is consistently about 2-fold higher than at 0.26 ml/cm2 (20 ml/T-75).At a constant medium volume the cell yield at stationary phase is directly dependent on the amount of serum present. Thus the increased yields from greater medium volumes is probably due to a large extent on the increased amount of serum growth factor(s) present.For maximal cell yields in non-perfused WI38 cells, we suggest that routine subcultivation be carried out in medium containing10 % (v/v) serum and at 0.53 ml/cm2 medium of surface area.  相似文献   

7.
Summary Primary cell cultures from neonatal rat ventricles were continuously exposed for 7 days in a modified roller apparatus to defined pericellular oxygen tension varying from 0.6 to 600 mm Hg. 5-Fluorodeoxyuridine was added to the medium to prevent over-growth of muscle cells by nonmuscle cells. A pericellular pO2 of 600 mm Hg was lethal. The range of about 15 to 150 mm Hg was favorable, as indicated by increases in total and muscle-characteristic proteins. Between the 2nd and 8th day of cultivation at a pO2 of 38 mm Hg, myosin content per cell increased 3.2-fold and creatine kinase activity 2.5-fold. At 0.6 mm Hg, myosin content increased only 1.3-fold and there was no increase in creatine kinase activity. The rate of myosin synthesis was diminished at this low pO2. ATP level and beating rate at 0.6 mm Hg did not differ from values at 38 mm Hg. The isoenzyme pattern of lactate dehydrogenase remained unchanged during cultivation at 38 mm Hg, whereas at 0.6 mm Hg it shifted towards an M-type pattern. These experiments suggest that neonatal rat heart cells maintained in vitro can adapt themselves to low oxygen tensions.  相似文献   

8.
Halothane-induced lipid peroxidation in NADPH-reduced liver microsomes from phenobarbital-pretreated male rats was studied under defined steady state oxygen partial pressures (Po2). Under anaerobic conditions, as well as at a Po2 above 10 mm Hg no halothane-induced formation of malondialdehyde was detected. At a Po2 below 10 mm Hg, however, with a maximum near 1 mm Hg oxygen, significant halothane-induced malondialdehyde formation was found. This evidence supports the hypothesis that halothane can induce lipid peroxidation. The Po2 (i) must be low enough to permit the reductive formation of . CF3 CHCl-radicals but (ii), it must be high enough to promote formation of lipid peroxides.  相似文献   

9.
10.
We tested the long-term effects of sublethal oxidative stresses on replicative senescence. WI-38 human diploid fibroblasts (HDFs) at early cumulative population doublings (CPDs) were exposed to five stresses with 30 microM tert-butylhydroperoxide (t-BHP). After at least 2 d of recovery, the cells developed biomarkers of replicative senescence: loss of replicative potential, increase in senescence-associated beta-galactosidase activity, overexpression of p21(Waf-1/SDI-1/Cip1), and inability to hyperphosphorylate pRb. The level of mRNAs overexpressed in senescent WI-38 or IMR-90 HDFs increased after five stresses with 30 microM t-BHP or a single stress under 450 microM H(2)O(2). These corresponding genes include fibronectin, osteonectin, alpha1(I)-procollagen, apolipoprotein J, SM22, SS9, and GTP-alpha binding protein. The common 4977 bp mitochondrial DNA deletion was detected in WI-38 HDFs at late CPDs and at early CPDs after t-BHP stresses. In conclusion, sublethal oxidative stresses lead HDFs to a state close to replicative senescence.  相似文献   

11.
Results of growth history studies on IMR-90 and WI-38 showed that the two cell strains were equivalent in population doublings achieved per life span. However, IMR-90 exhibited higher cell yields in phase II than did WI-38. In addition, entry of IMR-90 cells into phase III occurred more abruptly than in WI-38 cultures. Cell sizing analysis showed that phase II and phase III IMR-90 cell populations contained greater numbers of cells in the small volume categories. At senescence, both cell lines contained similar numbers of cells in all size categories. These data suggest that IMR-90 may not be equivalent in all respects to current stocks of WI-38.  相似文献   

12.
Summary Results of growth history studies on IMR-90 and WI-38 showed that the two cell strains were equivalent in population doublings achieved per life span. However, IMR-90 exhibited higher cell yields in phase II than did WI-38. In addition, entry of IMR-90 cells into phase III occurred more abruptly than in WI-38 cultures. Cell sizing analysis showed that phase II and phase III IMR-90 cell populations contained greater numbers of cells in the small volume categories. At senescence, both cell lines contained similar numbers of cells in all size categories. These data suggest that IMR-90 may not be equivalent in all respects to current stocks of WI-38.  相似文献   

13.
BACKGROUND: There is no general consensus about the specific oxygen and carbon dioxide requirements of the human pathogen Helicobacter pylori. This bacterium is considered a microaerophile and consequently, it is grown under atmospheres at oxygen tensions 5-19% and carbon dioxide tensions 5-10%, both for clinical and basic and applied research purposes. The current study compared the growth of H. pylori in vitro, under various gas atmospheres, and determined some specific changes in the physiology of bacteria grown under different oxygen partial pressures. METHODS: Measurements of bacterial growth under various conditions were carried out employing classical solid and liquid culture techniques. Enzymatic activities were measured using spectrophotometric assays. RESULTS: H. pylori and all the other Helicobacter spp. tested had an absolute requirement for elevated carbon dioxide concentrations in the growth atmosphere. In contrast with other Helicobacter spp., H. pylori can tolerate elevated oxygen tensions when grown at high bacterial concentrations. Under 5% CO(2), the bacterium showed similar growth in liquid cultures under oxygen tensions from microaerobic (< 5%) to fully aerobic (21%) at cell densities higher than 5 x 10(5) cfu/ml for media supplemented with horse serum and 5 x 10(7) cfu/ml for media supplemented with beta-cyclodextrin. Evidence that changes occurred in the physiology of H. pylori was obtained by comparing the activities of ferredoxin:NADH (nicotinamide adenine dinucleotide) oxidoreductases of bacteria grown under microaerobic and aerobic atmospheres. CONCLUSIONS: H. pylori is a capnophile able to grow equally well in vitro under microaerobic or aerobic conditions at high bacterial concentrations, and behaved like oxygen-sensitive microaerophiles at low cell densities. Some characteristics of H. pylori cells grown in vitro under microaerobic conditions appeared to mimic better the physiology of organisms grown in their natural niche in the human stomach.  相似文献   

14.
Epithelial cells derived from bovine pancreatic duct have been grown continuously in culture for 30 weeks (approximately 90 doublings of the cell population). The cells were grown in Eagle's minimal essential medium supplemented with 10% heat-inactivated fetal bovine serum, 2 mM glutamine, 0.1 mM nonessential amino acids, and antibiotics. In confluent cultures, the cells are multilayered and form circular structures. When tested at various passages, the cells neither formed colonies in soft agar nor produced tumors after inoculation into athymic, nude mice. Hydrocortisone (1 and 5 microgram per ml) and insulin (1,5 and 10 microgram per ml) had no effect on the growth of the cells. beta-Retinyl acetate inhibited growth rate and cell yield at a concentration of 5 microgram per ml but was not growth-inhibitory at lower concentrations. By electron microscopy the cells have numerous mitochondria, Golgi and microvilli. Mucous droplets were observed in a small proportion of the cells. Desmosome-like structures and occluding junctions were observed more frequently between cells that had been transferred as aggregates than between cells transferred as single cells. Cytochemical studies indicated that some cells produce PAS positive granules that were not removed after treatment of the cultures with diastase. Eleven cell clones were isolated from the mass culture. The growth rates of the clones are different as well as the period of time in which the clones can be propagated in vitro.  相似文献   

15.
K Kaji 《Human cell》1988,1(2):188-197
The purpose of this review is to introduce a simple and inexpensive culture method for human umbilical blood vessel endothelial cells. The medium used is MCDB-104 supplemented with 10% fetal bovine serum, 70 ng/ml endothelial cell growth factor from new-born bovine brains, 10 ng/ml murine epidermal growth factor, and 100 micrograms/ml heparin. The culture dishes are coated with gelatin. Under these conditions, endothelial cells from human vessels were grown with doubling times of 18-22 hrs and reached saturation densities of 8-12 x 10(4) cells/cm2. To determine the lifespan of the endothelial cells, the cells were serially subcultivated weekly at an inoculum size of 1,000 cells/cm2. Human endothelial cells from umbilical vein and artery were grown for 21 to 37 passages with 55 to 125 population doublings. This culture method seems to be useful for studying cell proliferation and functions of human endothelial cells.  相似文献   

16.
Synopsis Oxygen uptake (Vo 2) was measured in carp of approximately 40 cm length swimming at controlled variable oxygen tensions (Po 2). At Po 2> 120 mm Hg Vo 2 increased with an increase in swimming speed from 5.6 to 11.3 cm · sec–1. Extrapolation of Vo 2 to zero activity at Po 2 = 140 mm Hg revealed a standard O2 uptake of 36.7 ml O2 · kg–1 · h–1 at 20° C. At the lowest swimming speed (5.6 cm · s–1) the oxygen uptake increased when the water Po 2 was reduced. A near doubling in Vo 2 was seen at Po 2 = 70 mm Hg compared to 140 mm Hg. At higher swimming speeds in hypoxic water Vo 2 decreased relative to the values at low swimming speeds. As a result the slope of the lines expressing log Vo 2 as a function of swimming speed decreased from positive to negative values with decreasing Po 2 of the water. pH of blood from the caudal vein drawn before and at termination of swimming at Po 2 = 70 mm Hg and 100 mm Hg did not show any decrease in relation to rest values at Po 2 = 140 mm Hg. Blood lactate concentration did not increase during swimming at these tensions.  相似文献   

17.
The doubling potential of several hundred clones derived from WI-38 and WI-26 cell cultures has been determined. Clones were isolated at various population doubling levels (PDLs) during the finite in vitro life-span of the mass (uncloned) cultures. In all cases, there was a large variation in population doubling potential (or life-span) among the clones isolated from a single mass culture. When clones were isolated from mass cultures which had undergone eight or nine population doublings, only about 50% of the clones were capable of more than eight population doublings. This percentage was further reduced when clones were isolated from mass cultures at higher PDLs. Mass cultures appear to be composed of two subpopulation classes: one with a low population doubling potential, and the other with a higher population doubling potential. Nevertheless, the highest doubling potential observed in clones isolated from any single culture was about the same as the doubling potential of the mass culture from which single cells were taken.  相似文献   

18.
Human lung fibroblasts (WI-38) in late exponential phase of growth, in stationary phase after confluency was reached, and at high or low number of population doublings were used to investigate the synthesis of proline and hydroxyproline from glutamate or arginine. Glutamate was from two to five times as effective a precursor as arginine; glutamine did not seem to be involved in these metabolic pathways. Accumulation of protein-bound hydroxyproline in cell layers was observed only after confluency. Confluent cells synthesized more proline from glutamate than did cells in late exponential growth. Conversion of glutamate into intracellular free proline was conducted also to a greater extent in confluent cells at a high number of population doublings. Conversion of glutamate into proline or hydroxyproline in cell-layer protein was not affected significantly by the number of population doublings. Less total protein as well as less hydroxyproline accumulated with cells at a high number of population doublings.  相似文献   

19.
Expansion of human stem cells before cell therapy is typically performed at 20% O(2). Growth in these pro-oxidative conditions can lead to oxidative stress and genetic instability. Here, we demonstrate that culture of human mesenchymal stem cells at lower, physiological O(2) concentrations significantly increases lifespan, limiting oxidative stress, DNA damage, telomere shortening and chromosomal aberrations. Our gene expression and bioenergetic data strongly suggest that growth at reduced oxygen tensions favors a natural metabolic state of increased glycolysis and reduced oxidative phosphorylation. We propose that this balance is disturbed at 20% O(2), resulting in abnormally increased levels of oxidative stress. These observations indicate that bioenergetic pathways are intertwined with the control of lifespan and decisively influence the genetic stability of human primary stem cells. We conclude that stem cells for human therapy should be grown under low oxygen conditions to increase biosafety.  相似文献   

20.
WI-38 cells of various ages and SV40-transformed WI-38 cells were examined for differences in plasma membrane composition of glycoproteins and DNA synthesis. Sialic acid per milligram of protein content of the membranes of WI-38 cells decreased with passage of time in culture. Other glycoprotein fractions and alkaline phosphatase activity disappeared in the WI-38 cells with passage of time in culture (Phase III). Studies of DNA repair correlated with changes observed in the plasma membrane glycoprotein content of WI-38 cells over a passage of time in culture were also reported. Both the extent and rate of ultraviolet-induced unscheduled DNA synthesis remained relatively constant during the passage of the WI-38 cells until late phase III. At that time the extent of unscheduled DNA synthesis was measurably reduced. The number of cells in a population of phase III cells able to perform semiconservative DNA synthesis diminished with age in culture but not to an extent capable of explaining the observed changes seen in membrane composition of semiconservative DNA synthesis during passage of the cells in culture. Cells with an extended lifespan SV40-transformed WI-38 (VA 13.2 RA) cells, did not vary in membrane composition, semiconservative DNA synthesis, or unscheduled DNA synthesis over 200 serial subpassages of the cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号