首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Natural killer (NK) cells are cytotoxic lymphocytes that lack CD3 and express variable levels of CD16, CD56 and CD57. In recent years NK cells have been categorised into two major groups based on the level of CD56 expression. This phenotypic classification correlates with functional activity as CD56bright NK cells are the major cytokine producing subset whereas CD56dim NK cells exhibit greater cytotoxic activity. Previous studies have revealed a reduction in total NK cell numbers in association with ageing and this study sought to determine the potential influence of ageing on the number of NK cell subsets within peripheral blood.  相似文献   

2.
The primate endometrium is characterized in pregnancy by a tissue-specific population of CD56(bright) natural killer (NK) cells. These cells are observed in human, rhesus, and other nonhuman primate decidua. However, other subsets of NK cells are present in the decidua and may play distinct roles in pregnancy. The purpose of this study was to define the surface marker phenotype of rhesus monkey decidual NK (dNK) cell subsets, and to address functional differences by profiling cytokine and chemokine secretion in contrast with decidual T cells and macrophages. Rhesus monkey decidual leukocytes were obtained from early pregnancy tissues, and were characterized by flow cytometry and multiplex assay of secreted factors. We concluded that the major NK cell population in rhesus early pregnancy decidua are CD56(bright) CD16(+)NKp30(-) decidual NK cells, with minor CD56(dim) and CD56(neg) dNK cells. Intracellular cytokine staining demonstrated that CD56(dim) and not CD56(bright) dNK cells are the primary interferon-gamma (IFNG) producers. In addition, the profile of other cytokines, chemokines, and growth factors secreted by these two dNK cell populations was generally similar, but distinct from that of peripheral blood NK cells. Finally, analysis of multiple pregnancies from eight dams revealed that the decidual immune cell profile is characteristic of an individual animal and is consistently maintained across successive pregnancies, suggesting that the uterine immune environment in pregnancy is carefully regulated in the rhesus monkey decidua.  相似文献   

3.
Human NK cells can be divided into CD56(dim)CD16(+) killer Ig-like receptors (KIR)(+/-) and CD56(bright)CD16(-) KIR(-) subsets that have been characterized extensively regarding their different functions, phenotype, and tissue localization. Nonetheless, the developmental relationship between these two NK cell subsets remains controversial. We report that, upon cytokine activation, peripheral blood (PB)-CD56(bright) NK cells mainly gain the signature of CD56(dim) NK cells. Remarkably, KIR can be induced not only on CD56(bright), but also on CD56(dim) KIR(-) NK cells, and their expression correlates with lower proliferative response. In addition, we demonstrate for the first time that PB-CD56(dim) display shorter telomeres than PB- and lymph node (LN)-derived CD56(bright) NK cells. Along this line, although human NK cells collected from nonreactive LN display almost no KIR and CD16 expression, NK cells derived from highly reactive LN, efferent lymph, and PB express significant amounts of KIR and CD16, implying that CD56(bright) NK cells could acquire these molecules in the LN during inflammation and then circulate through the efferent lymph into PB as KIR(+)CD16(+) NK cells. Altogether, our results suggest that CD56(bright)CD16(-) KIR(-) and CD56(dim)CD16(+)KIR(+/-) NK cells correspond to sequential steps of differentiation and support the hypothesis that secondary lymphoid organs can be sites of NK cell final maturation and self-tolerance acquisition during immune reaction.  相似文献   

4.
Two populations of human natural killer (NK) cells can be identified in peripheral blood. The majority are CD3CD56dim cells while the minority exhibits a CD3CD56bright phenotype. In vitro evidence indicates that CD56bright cells are precursors of CD56dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3CD56dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3CD56bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56bright and CD56dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3CD56dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16+ cells, and CD56bright cells did not down-regulate CD62L, suggesting that CD56dim cells could not acquire a terminally differentiated phenotype and that CD56bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56bright NK cells differentiate into CD56dim NK cells, and contribute to further understand human NK cell ontogeny.  相似文献   

5.
Functional NK cell deficiencies are associated with autoimmune diseases, including multiple sclerosis. NK cells can promote or inhibit adaptive immunity via either cytokine production or cytotoxicity toward immature dendritic cells and activated T cells. In humans, this immunoregulatory role resides in the CD56(bright) NK cell subset, which is selectively expanded by daclizumab, a CD25-blocking Ab that suppresses multiple sclerosis-associated inflammation. The objective of this study was to investigate the molecular mechanisms underlying the cytotoxicity of NK cells toward activated T cells. We demonstrated that NK cells induce caspase-independent apoptosis that requires NK cell degranulation and causes mitochondrial dysfunction in activated T cells. Although both granzyme A and granzyme K (GrK) can mediate this form of apoptosis, quantitatively we observed preferential transfer of GrK to target cells. Consequently, gene silencing of GrK in the NK-92 cell line, which retains functional characteristics of CD56(bright) NK cells, profoundly inhibited the ability of NK-92 cells to kill activated syngeneic T cells. Finally, we demonstrated that daclizumab treatment significantly enhanced this newly defined mechanism of cytotoxicity by CD56(bright) NK cells. Our study describes the important physiological role that GrK plays in immunoregulation of adaptive immunity in humans and indicates that therapeutic exploitation of this pathway is beneficial in controlling autoimmunity.  相似文献   

6.
Tuberculous pleuritis is a good model for the study of specific cells at the site of active Mycobacterium tuberculosis (Mtb) infection. We investigated the frequency and phenotype of NK cells in paired samples of peripheral blood and pleural fluid (PF) from patients with tuberculosis (TB) or parapneumonic infection. We demonstrated for the first time a reduction of NK cells in PF from TB with an enrichment in the CD56brightCD16- subset. In agreement, in PF NK cells we observed an increased expression of CD94, NKG2A, CD62L, and CCR7 molecules and lower expression of Bcl-2 and perforin. The activation markers CD69 and HLA-DR were also increased. The enrichment in the CD56bright subset was due to an increased susceptibility to apoptosis of CD56+CD16+ NK cells mediated by heat-labile and stable soluble factors present in tuberculous effusions and not in PF from other etiologies. Furthermore, in TB patients, Mtb-induced IFN-gamma production by PF NK cells was not dependent on the presence of CD3+, CD19+, and CD14+ cells, suggesting a direct interaction of CD56bright cells with Mtb and/or the involvement of other accessory cells present at the site of Mtb infection.  相似文献   

7.
Phagocyte-derived reactive oxygen species ("oxygen radicals") have been ascribed a suppressive role in immunoregulation by inducing dysfunction and apoptotic cell death in lymphocytes. Earlier studies show that human NK cells are exceptionally sensitive to oxygen radical-induced apoptosis and functional inhibition. Two subsets of human CD56(+) NK cells have been identified: the highly cytotoxic CD56(dim) cells which constitute >90% of NK cells in peripheral blood, and the less cytotoxic but efficiently cytokine-producing CD56(bright) cells. In this study, we demonstrate that the CD56(bright) subset of NK cells, in contrast to CD56(dim) cells, remains viable and functionally intact after exposure to phagocyte-derived or exogenously added oxygen radicals. The resistance of CD56(bright) cells to oxidative stress was accompanied by a high capacity of neutralizing exogenous hydrogen peroxide, and by a high cell-surface expression of antioxidative thiols. Our results imply that CD56(bright) NK cells are endowed with an efficient antioxidative defense system that protects them from oxygen radical-induced inactivation.  相似文献   

8.
HIV-1 infection is characterized by loss of CD56dim CD16+ NK cells and increased terminal differentiation on various lymphocyte subsets. We identified a decrease of CD57 and CD57dim cells but not of CD57bright cells on CD56dim CD16+ NK cells in chronic HIV infection. Increasing CD57 expression was strongly associated with increasing frequencies of killer immunoglobulin-like receptors (KIRs) and granzyme B-expressing cells but decreasing percentages of cells expressing CD27+, HLA-DR+, Ki-67+, and CD107a. Our data indicate that HIV leads to a decline of less-differentiated cells and suggest that CD57 is a useful marker for terminal differentiation on NK cells.NK cells are effector cells of innate immunity which are pivotal as first-line defense against viral infections, such as HIV infection (14). Large genotypic studies demonstrated a delayed onset of AIDS in HIV-seropositive individuals carrying the activating receptor KIR3DS1 and/or alleles of the inhibiting receptor KIR3DL1 in conjunction with HLA-Bw4-80I (18, 19). Development of NK cells mainly takes place in the bone marrow, from which mature NK cells move out to reside and circulate in peripheral sites (13). Mature NK cells are characterized by granules which harbor granzymes and perforin. These NK cells are fully armed, “ready-to-go” effector cells (17).A number of NK cell abnormalities have been reported in HIV infection (9), including high activation status (2, 10), increased turnover (16), differential expression of activating and inhibitory receptors (20), impaired interaction with dendritic cells (12), and loss of CD56dim CD16+ NK cells (23). CD56dim CD16+ NK cells represent the largest NK cell subset in peripheral blood in healthy individuals. The expression of killer immunoglobulin-like receptors (KIRs) and CD57 are predominant features of this subpopulation (8, 15). CD57 expression on NK cells has been previously associated with replicative senescence on T and NK cells (4), raising the question of how HIV-1 infection alters CD57 expression on CD56dim CD16+ NK cells.To the best of our knowledge, no one has addressed the phenotypic and functional properties of CD56dim CD16+ NK cells that are preferentially lost during HIV infection. Here, we provide evidence that increasing CD57 expression indicates terminal differentiation in healthy individuals, as well in as HIV-infected subjects. We furthermore show that HIV infection is associated with preferential loss of less-differentiated cells, which are characterized by high activation status and turnover.In this study, blood samples from 37 HIV-seropositive individuals and 15 healthy subjects were analyzed; all HIV-infected patients were either antiretroviral therapy naïve or untreated for more than one year. The HIV-positive study cohort comprised 10 patients with a viral load of less than 2,000 copies/ml, 14 patients with a viral load ranging from 2,000/ml to 20,000 copies/ml, and 13 patients with a viral load above 20,000 copies/ml. CD4 T cell counts ranged from 180/μl to 1,355/μl, the average being 457.3/μl.The study was approved by the local ethics commission (Ethikkommission der Medizinischen Hochschule Hannover, Votum No. 3150), and all study participants gave informed written consent for their participation.Flow cytometric analysis was performed on cryopreserved peripheral blood mononuclear cells (PBMCs) as previously described (21, 22). A list of monoclonal antibodies employed in this study is available upon request. For intracellular analysis of granzyme B, perforin, and Ki-67, we used a fixation and permeabilization kit (Invitrogen). At least 1 million events were acquired for each sample, using either a FACSAria or LSR II flow cytometer (BD Biosciences). Data were analyzed with FlowJo (TreeStar). Lymphocytes were defined by forward and side scatter. CD3+, CD14+, CD19+, dead cells, and cell aggregates were removed from analysis based on peridinin chlorophyll protein and Viaprobe staining and gating on a plot of forward-scatter area versus forward-scatter height (Fig. (Fig.1A).1A). NK cells and their distinctive subpopulations were defined based on their CD56 and/or CD16 expression. Fluorescence-minus-one (FMO) staining was used to determine threshold values for the expression of specific markers.Open in a separate windowFIG. 1.HIV infection is associated with loss of CD57 and CD57dim but not CD57bright CD56dim CD16+ NK cells. (A) Representative gating scheme for identification of NK cells. NK cells were defined as CD3 CD14 CD19 lymphocytes expressing either CD56 or CD16 or both. We divided CD56dim CD16+ NK cells into three subsets based on their level of CD57 expression: CD57, CD57dim, and CD57bright cells. Numbers on FACS plots indicate frequency of gated population. SSC-A, side scatter area; FSC-A, forward scatter area; FSC-W, forward scatter width. (B) Comparison of percentages of the CD57, CD57dim, and CD57bright subpopulations in control subjects (n = 14) and HIV-seropositive individuals (n = 34) on CD56dim CD16+ NK cells. ns, not significant (P > 0.05); **, P < 0.01; ***, P < 0.001. (C) Frequencies of CD57, CD57dim, and CD57bright expressing CD56dim CD16+ NK cells in relation to total NK cells in control subjects (n = 14) and HIV-seropositive individuals (n = 34). (D) Mean frequency of CD56dim CD16+ NK cells in 14 control individuals and in 34 HIV-infected people and the distribution of CD57, CD57dim, and CD57bright cells within CD56dim CD16+ NK cells is shown. (E) Relationship between percentage of CD57dim CD56dim CD16+NK cells and percentage of CD56neg CD16+ NK cells on total NK cells. Horizontal bars in dot plots show the means.NK cells as defined above were sorted from cryopreserved PBMCs on a FACSAria (purities ranged from 91% to 99%). An amount of 105 NK cells was plated per well and stimulated with 10 ng/ml interleukin-15 (IL-15), 100 ng/ml IL-12, and 5 × 104 K562 cells. A CD107a degranulation assay was performed as described previously (1, 12). GraphPad Prism (version 5.0) software was used for statistical evaluation of data. Correlation analysis was performed using the Pearson test. The unpaired t test was performed when two groups were compared, and all t tests were two tailed. Comparison of more than two groups was performed using one-way analysis of variance followed by Tukey''s post-hoc test. P values of less than 0.05 were considered significant.We found that CD57 on NK cells was predominantly expressed on the CD56dim CD16+ population (Fig. (Fig.1A).1A). The expression patterns of CD57 allowed us to differentiate between three subfractions within CD56dim CD16+ NK cells, namely, CD57, CD57dim, and CD57bright cells. The frequency of the CD57bright subpopulation on CD56dim CD16+ NK cells was increased compared to the frequency of the CD57dim subpopulation on CD56dim CD16+ NK cells in HIV-seropositive patients but not in HIV-seronegative control subjects (Fig. (Fig.1B).1B). This relative increase was associated with substantial reductions of the CD57 CD56dim and the CD57dim CD56dim NK cell subpopulations of total NK cells in our HIV-seropositive cohort compared to these subpopulations in healthy control subjects (means, 36.6% versus 24.8% [P = 0.0002] and 22.4% versus 15.4% [P = 0.0001]), but the frequencies of CD57bright CD56dim NK cells within total NK cells were similar between HIV-infected patients and HIV-seronegative individuals (Fig. (Fig.1C).1C). In accordance with previously published data (3, 23), we could confirm that there is a relative loss of CD56dim CD16+ NK cells in HIV infection (mean, 84.3% versus 67.0%, P = 0.0004) (Fig. (Fig.1D).1D). Our data indicate that this loss is predominantly due to decreased numbers of CD57 CD56dim and CD57dim CD56dim NK cells, leading to a relative overrepresentation of CD57bright cells within CD56dim CD16+ NK cells in HIV infection (Fig. (Fig.1C).1C). There was no significant correlation between the relative loss of CD57 and CD57dim NK cells and absolute numbers of CD56dim CD16+ NK cells, but there was a significant inverse correlation between loss of CD57dim NK cells and increasing percentages of CD56 CD16+ cells (Pearson r = −0.54, P = 0.001) (Fig. (Fig.1E1E).To determine whether the relative decrease of CD57 and CD57dim NK cells was associated with parameters of HIV disease progression, we performed correlation analysis of the percentages of CD57 or CD57dim cells with viral load and CD4 T cell counts. We found no such correlations (Pearson r < 0.2 and P > 0.05 for all) (data not shown). A recent cross-sectional and longitudinal study demonstrated that changes in the NK cell compartment, as shown by down-modulation of Siglec-7 on CD56dim NK cells, are associated with HIV viremia (5). The longitudinal data in the study indicated that the full restoration of NK cell pathologies required 24 months of antiviral treatment. This suggests that alterations in the NK cell compartment can be driven by HIV viral load but that these changes seem to require a significant amount of time.We next investigated the phenotypic and functional properties of the CD57, CD57dim, and CD57bright subpopulations on CD56dim CD16+ NK cells. For KIR2DL2/DL3/DS2, we detected increasing prevalences of KIR-expressing NK cells with increasing expression of CD57 in both healthy control subjects and HIV-infected blood donors (Fig. (Fig.2A).2A). As for KIR3DS1/DL1, we found an increase of KIR+-expressing NK cells between CD57 and CD57bright cells in control individuals and significant differences in percentages of KIR3DS1/DL1-expressing NK cells between CD57 and CD57dim, as well as between CD57 and CD57bright, NK cells in our HIV-positive cohort (Fig. (Fig.2A).2A). These results suggest that increasing CD57 expression is associated with higher numbers of KIR-expressing NK cells in control subjects and HIV-infected subjects.Open in a separate windowFIG. 2.Phenotypic characterization of the CD57, CD57dim, and CD57bright subpopulations of CD56dim CD16+ NK cells. Representative flow cytometry plots for one control and one HIV-infected subject and summary data for all individuals whose PBMCs were analyzed are shown. CD57, CD57dim, and CD57bright NK cells are concatenated to visualize them in a single dot plot. Numbers in contour plots indicate percentages of gated events of the respective subset. (A) Percentages of KIR2DL2/DL3/DS2 and KIR3DS1/DL1-expressing CD57, CD57dim, and CD57bright cells were analyzed in control individuals (n = 15) and HIV-infected subjects (n = 37). (B) Numbers of HLA-DR-expressing and CD27-expressing CD57, CD57dim, and CD57bright cells in control individuals'' (n = 15) and HIV-infected subjects'' (n = 37) PBMCs were analyzed. Horizontal bars in dot plots show the means. ns, not significant (P > 0.05); *, P < 0.05; **, P < 0.01; ***, P < 0.001.We next addressed the question of whether increasing CD57 expression is linked to differential phenotypic properties of NK cells and analyzed the HLA-DR and CD27 expression of the CD57, CD57dim, and CD57bright subpopulations on CD56dim CD16+ NK cells. A significantly higher fraction of NK cells expressed HLA-DR in the CD57 than in the CD57bright subset in both healthy control individuals and HIV-infected subjects (Fig. (Fig.2B).2B). A considerably higher portion of NK cells was positive for HLA-DR in HIV-infected individuals than in control subjects (means, 3.2% versus 13.2% [P < 0.0001], 1.8% versus 10.4% [P = 0.001], and 0.9% versus 6.5% [P = 0.005] for CD57, CD57dim, and CD57bright subpopulations, respectively). We furthermore detected marked differences in frequencies of cells expressing CD27, a member of the tumor necrosis factor (TNF) receptor family (24). CD57 NK cells displayed the highest percentages of CD27+ cells, whereas CD57bright cells were almost all negative for CD27, in both control individuals and HIV-seropositive subjects (Fig. (Fig.2B).2B). We thus show that increasing expression of CD57 is associated with differential activation status and differential phenotype.Next, we sought to determine whether CD57 is linked to differential functional phenotypes by assessing the intracellular expression of granzyme B, perforin, and Ki-67. The frequencies of perforin-expressing NK cells did not vary within the different CD57 subsets of CD56dim CD16+ NK cells (Fig. (Fig.3A).3A). However, we found that CD57bright cells displayed the highest frequencies of granzyme B+ in both control and HIV-seropositive subjects, whereas CD57 cells exhibited the lowest percentages for granzyme B+ cells (Fig. (Fig.3A).3A). Conversely, when we studied the expression of Ki-67, we identified the opposite trend: less than 5% of CD57bright cells in control individuals and less than 10% of CD57bright cells in HIV-infected study subjects expressed Ki-67 (Fig. (Fig.3B).3B). The highest numbers of Ki-67+ cells were found in the CD57 population.Open in a separate windowFIG. 3.Functional characterization of CD57, CD57dim, and CD57bright cells within the CD56dim CD16+ NK cell population. (A) Representative staining results for granzyme B and perforin and summary data for control (n = 14) and HIV-seropositive subjects (n = 36). Numbers in the concatenated contour plots indicate percentages of gated events of the respective subset. B cells were defined as the negative control for granzyme and perforin staining. (B) Percentages of Ki-67+ and CD107a+ cells on CD57, CD57dim, and CD57bright cells within the CD56dim NK cell population in control (n = 14 and n = 9, respectively) and HIV-seropositive (n = 36 and n = 21, respectively) subjects'' PBMCs were analyzed. Horizontal bars in dot plots show the means. NC, negative control; ns, not significant (P > 0.05); *, P < 0.05; **, P < 0.01; ***, P < 0.001.We also assessed the presence of the degranulation marker CD107a on CD57, CD57dim, and CD57bright subpopulations of CD56dim CD16+ NK cells after stimulation with IL-12 and IL-15 and exposure to K562 cells. Similarly to what we had observed for Ki-67 expression, CD57 cells were the most efficient at degranulation when compared with CD57dim and CD57bright cells in HIV-infected individuals. Comparison to healthy controls revealed that there was a higher expression of CD107a in HIV-seropositive subjects for each CD57 subset. However, the most effective degranulation occurred in the CD57 and CD57dim subsets, which are preferentially depleted in HIV infection.We focused our analysis on CD56dim CD16+ NK cells because they constitute the largest NK cell subset in peripheral blood, they are the major NK cell subset expressing CD57 and KIRs, and they are the most prominent subpopulation for cytolytic activity. CD56dim CD16+ cells but not CD56bright CD16 NK cells were reported to be decreased in HIV-infected subjects (23), which we could confirm in our experiments (data not shown). We did not find CD57 on CD56bright CD16 NK cells either in healthy or in HIV-infected individuals. CD57 has been described as a marker for replicative senescence, and its expression has been associated with shorter telomeres and diminished proliferative capacities on T and NK cells (4). The presence of this marker on CD56dim CD16+ but not on CD56bright CD16+ NK cells might explain why the latter subset was shown to proliferate more efficiently upon cytokine stimulation (6). We demonstrated that increasing CD57 expression on NK cells was associated with lower numbers of CD27-expressing cells, a marker which is mainly expressed by CD56bright CD16 NK cells (24). CD56bright CD16 cells were suggested to be early NK cells, which differentiate from CD34dim CD45RA+ hematopoietic precursor cells with high expression of integrin α4β7 (11). These cells can furthermore give rise to CD56dim CD16+ NK cells (7). Our data support this hypothesis, as we show that CD57 can be found on CD56dim CD16+ NK cells but not on CD56bright NK cells, whereas the opposite is observed for CD27.We demonstrate that differential CD57 expression is associated with distinct functional characteristics. We show for the first time that increasing expression of CD57 on CD56dim CD16+ NK cells is associated with increasing prevalence of KIR+ and granzyme B+ cells. These cells appear to be more mature and differentiated in terms of KIR and granzyme B expression but less functionally active, as shown by decreased expression of Ki-67 and CD107a. We therefore propose that CD57 is not only a marker for replicative senescence but, in addition, a marker for terminal differentiation on NK cells, which is characterized by increased expression of KIR and higher granzyme B content and “counterbalanced” by decreased degranulation (CD107a) and decreased proliferation (Ki-67).Notably, we observed consistently higher frequencies of granzyme B+ cells in all three subsets within CD56dim CD16+ NK cells from HIV-seropositive individuals than in healthy control subjects (means, 52.9% versus 78.7% [P < 0.0001], 65.3% versus 89.6% [P < 0.0001], and 76.5% versus 95.0% [P < 0.0001]for CD57, CD57dim, and CD57bright subpopulations, respectively) (Fig. (Fig.1C).1C). Furthermore, HIV infection was associated with higher numbers of Ki-67-expressing NK cells (means, 8.4% versus 16.1% [P = 0.0005], 5.3% versus 11.6% [P = 0.0016], and 4.1% versus 6.2% [P = 0.04]) (Fig. (Fig.1C).1C). These changes, including the strong increase in HLA-DR-expressing NK cells, probably reflect the systemic immune activation in HIV-infected individuals.In summary, these findings support a view of a differential regulation of NK function and are in concordance with maturation of NK cells with high expression of CD57 on NK cells with a more terminally differentiated phenotype. Our data indicate that high turnover; activation status; and active degranulation as characterized by the expression of Ki-67, HLA-DR, and CD107a are mainly features of CD57 and much less of CD57dim NK cells. HIV infection is associated with increased activation, proliferation, and cytotoxicity during “early” stages of CD56dim CD16+ NK cell differentiation compared to their occurrence in healthy controls, but those are the very cells that are significantly decreased in chronic HIV infection. A loss of these functionally more active NK cells may be a yet-unappreciated factor in overall NK cell pathology and a further possible explanation for the impairment of NK cells in their contribution to viral control in HIV infection.  相似文献   

9.
NK cells are pivotal sentinels of the innate immune system and distinct subpopulations in peripheral blood have been described. A number of studies addressed HIV-induced alterations of NK cell phenotype and functionality mainly focusing on CD56dimCD16+ and CD56CD16+ NK cells. However, the impact of HIV-infection on CD56bright NK cells is less well understood. Here we report a rise of CD56bright NK cells in HIV-infected individuals, which lack CCR7-expression and strongly correlate with HIV viral load. CCR7CD56bright NK cells were characterized by increased cytolytic potential, higher activation states and a more differentiated phenotype. These cells thus acquired a number of features of CD56dimCD16+ NK cells. Furthermore, CD56bright NK cells from HIV patients exhibited higher degranulation levels compared to uninfected individuals. Thus, chronic HIV-infection is associated with a phenotypic and functional shift of CD56bright NK cells, which provides a novel aspect of HIV-associated pathogenesis within the NK cell compartment.  相似文献   

10.
NK cells recognize and kill tumor cells and normal cells, and these play an important role in immune defense in cancer, infectious disease, and autoimmunity. NK killing is regulated by positive or negative signals derived from the interaction of surface receptors with ligands on the target cells. However, the mechanisms controlling the proliferation and maintenance of NK cells in normal human individuals are less clearly defined. In this study, using an entirely autologous system, we demonstrate that human peripheral blood CD3-CD56+, killer cell-inhibitory receptor (KIR)-expressing cells proliferate and expand in response to LPS. These responses are enhanced in the presence of anti-IL-10 receptor-blocking Abs or on the removal of CD14+ cells from the cultures. This enhancement is also reflected in substantial increases in cytolytic activity and IFN-gamma production. The negative effect of CD14+ cells may also be IL-10 mediated, IL-10 being lost from the culture supernatants of CD14-depleted PBMC and rIL-10 reversing the effect of this depletion. On the other hand, mRNA for the p35 and p40 subunits of IL-12 is still induced in CD14-depleted cultures. The expansion of CD3-CD56+ cells was also inhibited by CTLA4-Ig, indicating a role for CD80/86. B lymphocytes were not required for the expansion of CD3-CD56+ cells, whereas removal of MHC class II+ cells from CD14-depleted cultures resulted in a complete abrogation of these responses. Expansion of CD3-CD56+ cells was reconstituted in MHC class II-depleted cell cultures by adding back monocyte-derived dendritic cells. These results indicate that the responses of CD3-CD56+ NK cells to LPS may be driven by a MHC class II+ B7+ CD14- peripheral population, most likely blood dendritic cells.  相似文献   

11.
FTY720 (fingolimod) treatment of multiple sclerosis (MS) results in lymphopenia due to increased recruitment into and decreased egress from secondary lymphoid organs of CCR7(+) lymphocytes. Although absolute numbers of NK lymphocytes were reported as being unaltered in FTY720-treated MS patients (MS-FTY), such analyses did not detect a change in a minor subset. Because expression of CCR7 has been described on CD56(bright) NK cells, a minority population of NK cells, we investigated the effect of FTY720 treatment on the phenotype and function of human NK cells in the peripheral circulation of MS patients. MS-FTY patients displayed a decreased proportion of peripheral CD56(bright)CD62L(+)CCR7(+) NK cells compared with untreated MS and healthy donors. In vitro treatment with FTY720-P increased migration of untreated donor NK cells to CXCL12 while reducing the response to CX3CL1 with similar migration responses seen in NK cells from MS-FTY patients. FTY720-P inhibited sphingosine 1-phosphate-directed migration of CD56(bright) and CD56(dim) NK cells subsets from untreated healthy donors. IL-12- and IL-15-stimulated NK cells from MS-FTY patients displayed similar capacity to produce IFN-γ, TNF, IL-10, and MIP-1α cytokines/chemokines compared with NK cells from untreated healthy donors and displayed comparable levels of degranulation in response to K562 tumor cells compared with untreated donors. Subset alterations and function of NK cell populations will need to be considered as part of assessing overall immunosurveillance capacity of patients with MS who will receive sustained FTY720 therapy.  相似文献   

12.
In vivo blockade of the human IL-2R by mAb has been used for immunosuppression in transplantation, therapy for leukemia, and autoimmune diseases. In this study, we report that administration of a humanized IL-2R blocking Ab induced a 4- to 20-fold expansion of CD56(bright) regulatory NK cells in uveitis patients over time. The induced CD56(bright) regulatory NK cells from patients exhibited similar phenotype as those naturally occurring CD56(bright) cells. Patients with active uveitis had a significantly lower level of CD56(bright) NK cells compared with normal donors (p < 0.01). In addition, the induced CD56(bright) cells could secrete large amounts of IL-10 whereas CD56(dim) NK cells could not, suggesting that the induction of the CD56(bright) cells may have a beneficial effect on the remission of active uveitis. Our observation may have implications to IL-2R blockade therapy and for the potential role of CD56(bright) regulatory NK cells in autoimmune diseases.  相似文献   

13.
Human NK cells are classified into two populations according to the intensity of CD56 surface expression, as well as possession of CD16, FcRIII. CD56dimCD16bright make up 90% circulating NK cells, whereas CD56brightCD16-/dim comprises the remaining 10%. Here we report that peripheral NK cells upon CD16 cross-linking up-regulates the expression of activating markers and receptors such as CD25, CD69, NKp44, NKp30, CD40L and the intensity of CD56 expression. Additionally, co-culturing immature DCs with CD16 activated NK cells was found to significantly increase the expression of maturation markers on DCs. These results suggest that CD16 cross-linking on resting peripheral blood NK cells triggers the activation of these cells and induces the appearance of CD56bright NK cells. The latter were found capable of producing pro-inflammatory cytokines, IFN-γ and TNF-α and notably IL-12.  相似文献   

14.
Human NK cells can be divided into CD56(dim) and CD56(bright) subsets. These two types of NK cells respond to different types of stimuli, with CD56(dim) NK cells having direct cytotoxic ability and CD56(bright) NK cells having mainly an immunoregulatory function. We show that the CD16+ CD56(dim) NK subset is characterized by sensitivity to cell death induced by activated granulocytes. We identified hydrogen peroxide (H2O2) as the major effector molecule responsible for the cytotoxic effect of granulocytes on CD56(dim) NK cells, because the ability of granulocytes to kill CD56(dim) NK cells was completely abrogated in the presence of the hydrogen peroxide scavenger catalase. When exposing NK cells to H2O2, CD56(dim) cells showed rapid mitochondrial depolarization and down-regulation of activating NKRs, eventually resulting in cell death, whereas CD56(bright) cells remained unaffected. The difference in sensitivity to H2O2 was mirrored by a difference in intracellular oxidation levels between CD56(dim) and CD56(bright) NK cells, and cell lysates from the latter subset possessed a greater ability to block H2O2-mediated oxidation. Our data may explain the preferential accumulation of CD56(bright) NK cells often seen in environments rich in reactive oxygen species, such as at sites of chronic inflammation and in tumors.  相似文献   

15.
The purpose of this study was to examine the impact of intensive training for competitive sports on natural killer (NK) cell lytic activity and subset distribution. Eight female college-level volleyball players undertook 1 mo of heavy preseason training. Volleyball drills were performed 5 h/day, 6 days/wk. Morning resting blood samples were collected before training (Pre), on the 10th day of training (During), 1 day before the end of training (End), and 1 wk after intensive training had ceased (Post). CD3(-)CD16(bright)CD56(dim) (CD56(dim) NK), CD3(-)CD16(dim/-)CD56(bright) NK (CD56(bright) NK), and CD3(+)CD16(-)CD56(dim) (CD56(dim) T) cells in peripheral blood were determined by flow cytometry. The circulating count of CD56(dim) NK cells (the predominant population, with a high cytotoxicity) did not change, nor did the counts for other leukocyte subsets. However, counts for CD56(bright) NK and CD56(dim) T cells (subsets with a lower cytotoxicity) increased significantly (P < 0.01) in response to the heavy training. Overall NK cell cytotoxicity decreased from Pre to End (P = 0.002), with a return to initial values at Post. Lytic units per NK cell followed a similar pattern (P = 0.008). Circulating levels of interleukin-6, interferon-gamma, and tumor necrosis factor-alpha remained unchanged. These results suggest that heavy training can decrease total NK cell cytotoxicity as well as lytic units per NK cell. Such effects may reflect in part an increase in the proportion of circulating NK cells with a low cytotoxicity.  相似文献   

16.
Human NK cells comprise two main subsets, CD56(bright) and CD56(dim) cells, which differ in function, phenotype, and tissue localization. To further dissect the differentiation from CD56(bright) to CD56(dim) cells, we performed ex vivo and in vitro experiments demonstrating that the CD56(bright)CD16(+) cells are an intermediate stage of NK cell maturation. We observed that the maximal frequency of the CD56(bright)CD16(+) subset among NK cells, following unrelated cord blood transplantation, occurs later than this of the CD56(bright)CD16(-) subset. We next performed an extensive phenotypic and functional analysis of CD56(bright)CD16(+) cells in healthy donors, which displayed a phenotypic intermediary profile between CD56(bright)CD16(-) and CD56(dim)CD16(+) NK cells. We also demonstrated that CD56(bright)CD16(+) NK cells were fully able to kill target cells, both by Ab-dependent cell cytotoxicity (ADCC) and direct lysis, as compared with CD56(bright)CD16(-) cells. Importantly, in vitro differentiation experiments revealed that autologous T cells specifically encourage the differentiation from CD56(bright)CD16(-) to CD56(bright)CD16(+) cells. Finally, further investigations performed in elderly patients clearly showed that both CD56(bright)CD16(+) and CD56(dim)CD16(+) mature subsets were substantially increased in older individuals, whereas the CD56(bright)CD16(-) precursor subset was decreased. Altogether, these data provide evidence that the CD56(bright)CD16(+) NK cell subset is a functional intermediate between the CD56(bright) and CD56(dim) cells and is generated in the presence of autologous T CD3(+) cells.  相似文献   

17.
18.
BACKGROUND: Natural killer (NK) cells produce multiple cytokines with potential immune regulatory roles. We standardised a whole-blood flow cytometry method to visualise intracellular cytokine production by NK cells for the study of NK cell biology and for clinical monitoring. METHODS: With a three-colour fluorescent labelling technique, specific cytokine production by NK or T cells was visualised directly in whole blood in the same sample after stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin and by electronically gating on the CD3-ve/CD56+ve NK population or on the CD3+/CD56+ NK-T-cell population. RESULTS: Detectable levels of tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) but not of interleukin-2 (IL-2) or IL-4 were easily observed in NK cells. The visualisation of the cytokine production by NK cells was dependent on the addition of a Golgi transport inhibitor, Brefeldin A. Other known stimuli for NK cells (IL-2 and CD16 monoclonal antibody and incubation with K562, the NK-sensitive cell line) promoted IFN-gamma and TNF-alpha production in NK cells to a lesser extent than did PMA and ionomycin stimulation. CONCLUSIONS: This whole-blood flow cytometric assay appears to be an useful and easy method to examine cytokine production by NK cells and/or by CD3+CD56+ NK-T lymphocytes in patients with relevant diseases.  相似文献   

19.
20.
The role of CD56 in the process of target cell killing by NK cells has been investigated. Addition of NK cells to HuH28 cells, a CD56-expressing cell line, led to inhibition of the growth of the target cells, which exhibited morphological features of apoptosis. These changes were prevented by the addition of a polyclonal anti-NCAM to the cultures. Since neither Fas antigen expression nor apoptotic changes were induced by addition to a mixed culture supernatant of NK and target cells, both the Fas-Fas ligand system and soluble factors do not seem to participate in apoptosis in these circumstances. Increased secretion of interferon-gamma and tumour necrosis factor-alpha by NK cells must therefore have been suppressed by the presence of the polyclonal antibody. These results lead us to conclude that CD56, through homophilic binding, plays an important role in the process of target cell killing by an apoptosis mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号