首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth and mortality patterns and the mode of competitionof six tree species forming a sub-boreal climax forest in Hokkaido,northern Japan, were investigated based on the diffusion modelat the level of the individual tree 2 m height in a 2·3-hastudy site. Picea jezoensis, Picea glehnii, Betula ermanii andAbies sachalinensis were dominant species, occupying approx.94% of the total basal area. Sorbus commixta and Acer ukurunduensewere subordinate species occupying approx. 6% of the total basalarea. A model for individual growth was developed, consideringboth intra- and inter-specific competition and the degree ofcompetitive asymmetry. Asymmetry was found in intraspecificcompetition of Sorbus commixta and Acer ukurunduense. Piceajezoensis, Betula ermanii and Abies sachalinensis showed symmetricintraspecific competition. There was little interspecific competitionamongst Picea jezoensis, Picea glehnii and Betula ermanii. Abiessachalinensis competed symmetrically with Picea jezoensis (onlyvery weakly, P < 0·1) and Betula ermanii (P < 0·01).Picea glehnii gave no indication of inter- or intra-specificcompetition. The growth of the four dominant species was neveraffected by the two subordinate species; the growth of the twosubordinate species was governed by the abundances of the fourdominant species, the sum of which almost amounted to standcrowdedness (i.e. symmetric competitive effect and one-sidedcompetitive direction). On the scale of 2·3 ha of thesub-boreal forest, symmetric competition prevailed over one-sidedor asymmetric competition although statistical evidence forany competitive effects was rather weak. This was probably dueto the relatively low tree density and stand crowdedness ofthis climax forest. Little competition between the dominantspecies suggested by relatively low proportions of r2-valuesattributable to competitive effects indicates weak organizationamongst the component species (i.e. species were more or lessindependent of each other) at the level of the individual tree 2 m height on the 2·3-ha scale.Copyright 1995, 1999Academic Press Climax forest, diffusion model, individual growth, one-sided competition, size structure, symmetric competition  相似文献   

2.
The crown shape and the mode of competition between saplings(<2m in height) of the two conifers,Picea jezoensis andAbiessachalinensis, of a sub-boreal forest, northern Japan, wereinvestigated based on the diffusion model. A model for individualsapling growth considering both inter- and intraspecific competitionwas developed. The effect of species-specific crown shape onthe sapling growth and competition of the two species were examined.PiceajezoensisandAbies sachalinensissaplings had deep conic and shallowflat crowns, respectively.Picea jezoensishad more foliage massthanAbies sachalinensisof the same sapling mass. It was suggestedthat thePicea jezoensissapling has a high cost for assimilation–respirationbalance under dark conditions of closed canopies, whereas theAbiessachalinensissapling maintains effective assimilation even undersuppressed conditions. Widely spaced saplings, such as gap successors,ofPicea jezoensishad a greater relative growth rate (a0) thanwidely spacedAbies sachalinensis. The crown shape of saplingsof the two species shows different adaptations for efficientpersistence in the sub-boreal forest. Saplings ofPicea jezoensisandAbies sachalinensiswere not uniformlydistributed, but aggregated in different sites as the saplingsgrew, indicating habitat segregation between the two speciesat the sapling stage. Intraspecific sapling competition wasone-sided in each of the two conifers. Interspecific saplingcompetition was one-sided in the direction only fromAbies sachalinensistoPiceajezoensis. Therefore, asymmetric competition prevailed at thesapling stage of the two species. These results contrast withweak symmetric competition or the almost absence of competitionbetween trees (2m in height) of the two species (Kubota andHara,Annals of Botany76: 503–512, 1995). The mode of competitionchanged with the life-history stage from the sapling (intenseand asymmetric) to the tree (weak and symmetric or almost absent). In conclusion (1) asymmetric and intense competition betweensaplings brought about habitat segregation between the dominantspecies,Picea jezoensisandAbies sachalinensis, in the earlystage of life-history; (2) therefore, the coexistence ofPiceajezoensisandAbies sachalinensisof the sub-boreal forest wasdetermined by the boundary conditions for the growth dynamicsof the trees, as segregation of establishment sites resultingfrom asymmetric and intense competition between saplings; (3)then the species composition of the forest was maintained byweak symmetric competition or the almost absence of competitionbetween trees. Crown shape; growth dynamics; species coexistence; habitat segregation; diffusion model  相似文献   

3.
Evaluating, and possibly ameliorating, the effects of base cation depletion in forest soils caused by acid deposition is an important topic in the northeastern United States. We added 850 kg Ca ha−1 as wollastonite (CaSiO3) to an 11.8-ha watershed at the Hubbard Brook Experimental Forest (HBEF), a northern hardwood forest in New Hampshire, USA, in fall 1999 to replace calcium (Ca) leached from the ecosystem by acid deposition over the past 6 decades. Soil microbial biomass carbon (C) and nitrogen (N) concentrations, gross and potential net N mineralization and nitrification rates, soil solution and stream chemistry, soil:atmosphere trace gas (CO2, N2O, CH4) fluxes, and foliar N concentrations have been monitored in the treated watershed and in reference areas at the HBEF before and since the Ca addition. We expected that rates of microbial C and N cycle processes would increase in response to the treatment. By 2000, soil pH was increased by a full unit in the Oie soil horizon, and by 2002 it was increased by nearly 0.5 units in the Oa soil horizon. However, there were declines in the N content of the microbial biomass, potential net and gross N mineralization rates, and soil inorganic N pools in the Oie horizon of the treated watershed. Stream, soil solution, and foliar concentrations of N showed no response to treatment. The lack of stimulation of N cycling by Ca addition suggests that microbes may not be stimulated by increased pH and Ca levels in the naturally acidic soils at the HBEF, or that other factors (for example, phosphorus, or Ca binding of labile organic matter) may constrain the capacity of microbes to respond to increased pH in the treated watershed. Possible fates for the approximately 10 kg N ha−1 decline in microbial and soil inorganic pools include components of the plant community that we did not measure (for example, seedlings, understory shrubs), increased fluxes of N2 and/or N storage in soil organic matter. These results raise questions about the factors regulating microbial biomass and activity in northern hardwood forests that should be considered in the context of proposals to mitigate the depletion of nutrient cations in soil.  相似文献   

4.
We exploited the natural climate gradient in the northern hardwood forest at the Hubbard Brook Experimental Forest (HBEF) to evaluate the effects of climate variation similar to what is predicted to occur with global warming over the next 50–100 years for northeastern North America on soil carbon (C) and nitrogen (N) cycle processes. Our objectives were to (1) characterize differences in soil temperature, moisture and frost associated with elevation at the HBEF and (2) evaluate variation in total soil (TSR) and microbial respiration, N mineralization, nitrification, denitrification, nitrous oxide (N2O) flux, and methane (CH4) uptake along this gradient. Low elevation sites were consistently warmer (1.5–2.5°C) and drier than high elevation sites. Despite higher temperatures, low elevation plots had less snow and more soil frost than high elevation plots. Net N mineralization and nitrification were slower in warmer, low elevation plots, in both summer and winter. In summer, this pattern was driven by lower soil moisture in warmer soils and in winter the pattern was linked to less snow and more soil freezing in warmer soils. These data suggest that N cycling and supply to plants in northern hardwood ecosystems will be reduced in a warmer climate due to changes in both winter and summer conditions. TSR was consistently faster in the warmer, low elevation plots. N cycling processes appeared to be more sensitive to variation in soil moisture induced by climate variation, whereas C cycling processes appeared to be more strongly influenced by temperature.  相似文献   

5.
The "Initial Floristic Composition" hypothesis is applied to secondary tropical rain forest succession in abandoned agricultural fields with light previous land-use and close to seed sources. This hypothesis predicts that both pioneer and shade-tolerant species colonize a site directly after abandonment, and as the canopy closes, the recruitment of pioneers sharply declines, while recruitment of shade-tolerant species continues. It also predicts higher mortality among pioneers. Consequently, recruited and dead trees are expected to differ in species composition, with highest species richness for the recruits. During 18 mo, we monitored recruitment and mortality of trees with height ≥ 1.5 m in eight plots in abandoned cornfields with initial fallow age of 1–5 yr, in SE Mexico. Shade-tolerant species established in the first years of succession, albeit in low numbers. As predicted, recruited and dead trees differed in species richness and composition, and in shade-tolerant frequency. In contrast to our expectations, over 50 percent of recruits were from pioneer species, as high stand-level mortality opened new opportunities for continued pioneer colonization. Species turnover starts very early in succession but is not always a gradual and continuous process, complicating prevailing succession models. The strong spatial and temporal variability of succession emphasizes the need to monitor these dynamics in permanent plots across a range of initial stand ages, with multiple plots in a given age class.  相似文献   

6.
7.
Models for the transmission of an infectious disease in one and two host populations with and without self-regulation are analyzed. Many unusual behaviors such as multiple positive equilibria and periodic solutions occur in previous models that use the mass-action (density-dependent) incidence. In contrast, the models formulated using the frequency-dependent (standard) incidence have the behavior of a classic endemic model, since below the threshold, the disease dies out, and above the threshold, the disease persists and the infectious fractions approach an endemic equilibrium. The results given here reinforce previous examples in which there are major differences in behavior between models using mass-action and frequency-dependent incidences.  相似文献   

8.
应用Simpson生态优势度指数(C),Shannon—Wiener多样性指数(H)和均匀度(E)等指标,对落叶阔叶林的4个组合类型的物种多样性进行了分析。结果表明;乔木层树种的多样性指数H变化在1.4709-3.8875之间,以T_3(3.8875)最高,依次为T_4、T_2、T_1(1.4709)最低;均匀度E为T_3>T_4>T_1>T_2,而生态优势度C与H的变化相反。表现出物种多样性不只受到海拔高度、生境条件的影响,人为活动、群落的稳定性等因素也有重要作用。相反,灌木层和草本层的物种多样性受人为活动的影响相对较小,表现出常规的变化,即随海拔升高,H和E值降低,C值则升高。格局检验的结果表明:栓皮栎种群为集群分布,短柄枹群呈随机分布。而化香种则呈现在化香林中的集群分布,在短柄枹林中又为随机分布的特点。  相似文献   

9.
10.
Crown Architecture and Species Coexistence in Plant Communities   总被引:1,自引:0,他引:1  
The relationships between crown architecture and species coexistencewere studied using the diffusion model and the canopy photosynthesismodel for multi-species plant communities. The present paperdeals with two species having different crown shapes [conic-canopyplant (CCP) and spheroidal-canopy plant (SCP)], for variousinitial mean sizes at the establishment stage and physiologicalparameter values (photosynthetic rate, etc.). Recruitment processeswere not incorporated into the model, and thus simulations weremade for the effects on the pattern of species coexistence ofeither sapling competition starting from different sapling banksor competition in single-cohort stands with little continualestablishment of species until a stand-replacement disturbance.The following predictions were derived: (1) SCPs can establishlater/slowly in the lower canopy layer even if they are overtoppedby a CCP which established first/rapidly; (2) if SCPs establishedfirst/rapidly and occupy the upper canopy layer, a CCP can rarelyestablish later/slowly in the lower canopy layer; (3) smallest-sizedCCPs can persist well in the lowermost canopy layer overtoppedby a SCP, suggesting a waiting strategy of CCP's saplings inthe understorey of a crowded stand; (4) even if CCPs establishedfirst/rapidly and occupy the upper canopy layer, an SCP canestablish later/slowly in the lower canopy layer. Therefore,the species diversity of SCPs which established first/rapidlyand occupy the upper canopy layer limits the number of CCP specieswhich can establish later/slowly. In contrast, the species diversityof CCPs which established first/rapidly and occupy the uppercanopy layer does not affect the number of SCP species whichcan establish later/slowly. The combination of initial sizesof a CCP and an SCP at the establishment stage (i.e. establishmenttiming) affects the segregation of vertical positions in thecanopy between the two species with different crown shape, andnot only species-specific physiological traits but also crownarchitecture greatly affects the coexistence pattern betweenspecies with different crown architectures. The theoreticalpredictions obtained here can explain coexistence patterns foundin single-cohort conifer-hardwood boreal and sub-boreal forests,pointing to the significance of crown architecture for speciescoexistence. Diffusion equation model; canopy photosynthesis model; conifer-hardwood boreal/sub-boreal forest; sapling establishment; vertical foliage profile  相似文献   

11.
Ecosystems - Tropical forests and savannas can co-occur in a range of macro-environmental conditions. In these conditions, disturbances and resource availability are thought to control savanna and...  相似文献   

12.
The association between species richness and ecosystem energy availability is one of the major geographic trends in biodiversity. It is often explained in terms of energetic constraints, such that coexistence among competing species is limited in low productivity environments. However, it has proven challenging to reject alternative views, including the null hypothesis that species richness has simply had more time to accumulate in productive regions, and thus the role of energetic constraints in limiting coexistence remains largely unknown. We use the phylogenetic relationships and geographic ranges of sister species (pairs of lineages who are each other’s closest extant relatives) to examine the association between energy availability and coexistence across an entire vertebrate class (Aves). We show that the incidence of coexistence among sister species increases with overall species richness and is elevated in more productive ecosystems, even when accounting for differences in the evolutionary time available for coexistence to occur. Our results indicate that energy availability promotes species coexistence in closely related lineages, providing a key step toward a more mechanistic understanding of the productivity–richness relationship underlying global gradients in biodiversity.  相似文献   

13.
We investigated the mechanism of coexistence of the rare Amani Sunbird (Hedydipna pallidigastra) and the widespread Collared Sunbird (H. collaris), within Brachystegia woodland in the Arabuko‐Sokoke Forest, Kenya. We compared how prey abundance and search strategies affect resource exploitation by the two species. We used foraging theory to direct our measures of feeding activities as influenced by sunbird species, tree species and foraging height. We evaluated invertebrate abundance among tree species at different heights within trees. The Collared Sunbird primarily used the understory, and the Amani Sunbird primarily used the upper‐canopy. Overall, the rate of prey attacks per flight of the Amani Sunbird was 2.8 times greater than that of the Collared Sunbird. The Amani Sunbird, however, used increased search and attack rates in the understory compared with the mid‐ and upper‐canopies, but the Collared Sunbird foraged similarly throughout all strata. We hypothesize that the increased foraging rate of the Amani in the understory reflects increased foraging costs due to interference from the Collared Sunbird in that stratum. Furthermore, the Collared Sunbird exploits rich patches by moving frequently from place to place. The Amani Sunbird forages slowly, with reduced travel rates, and with a greater number of prey captures within a patch. Arthropod density did not differ among the vegetative strata, but was higher in Brachystegia spiciformis and Hymenaea verrucosa than in six other tree species. We hypothesize that the Amani Sunbird appears dependent upon continued tall B. spiciformis trees within the canopy of the Arabuko‐Sokoke Forest.  相似文献   

14.
Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation.  相似文献   

15.
Forest vegetation is known to increase hillslope stability by reinforcing soil shear resistance and by influencing hydrologic conditions of soil. Although the importance of plant root systems for hillslope stability has received considerable attention in recent years, the quantification of such an effect needs more investigation. In this paper, we present a synthesis of the data gathered in the last 5 years for some species in different locations of the Alps and Prealps of Lombardy (Northern Italy) with the aim to increase our knowledge on root tensile strength and on Root Area Ratio distribution within the soil. Concerning root tensile strength we developed tensile strength–diameter relationships for eight species: green alder (Alnus viridis(Chaix) D.C.), beech (Fagus sylvatica L.), red willow (Salix purpurea L.), goat willow (Salix caprea L.), hazel (Corylus avellana L.), European ash (Fraxinus excelsior L.), Norway spruce (Picea abies (L.) Karst.) and European larch (Larix decidua Mill.). Results show a great variability among the different species and also for the same species. In general, however, root strength (in terms of tension) tends to decrease with diameter according to a power law, as observed by other Authors. Comparing the power law fitting curves for the considered species, it can be observed that they fall in a relatively narrow band, with the exception of hazel, which appears the most resistant. Concerning the evaluation of root distribution within the soil we estimated the Root Area Ratio (the ratio between the area occupied by roots in a unit area of soil) according to its depth for five species (beech, Norway spruce, European larch, mixed hazel and ash) in three locations of Lombardy. Results show that there is a great variability of root density for the same species well as for different points at the same locality. The general behaviour of root density, in any case, is to decrease with depth according to a gamma function for all the studied species. The results presented in this paper contribute to expanding the knowledge on root resistance behaviour and on root density distribution within the soil. The studied location have allowed the implementation of soil–root reinforcement models and the evaluation of the vegetation contribution to soil stability.  相似文献   

16.
To understand the mechanisms driving species diversity is central to community ecology. Here, we explored if habitat partitioning is associated with a species‐rich ectoparasite community in small rodents from a tropical dry forest in western Mexico. We trapped 199 mice in three 0.5 ha‐plots from eight small rodent species for every two months, from July 2011 to April 2012, and collected their ectoparasites. We identified 17 species of mites, two sucking lice species, two phoretic species, and one commensal species. The most abundant ectoparasite species was Steptolaelaps liomydis, representing 42 percent of all ectoparasites collected; seven ectoparasite species had < 10 individuals. Eighteen ectoparasite species (of 22 species) were collected from the most abundant rodent Liomys pictus. C‐score and the number of checkerboard species pairs were significantly higher against a random expectation. Ectoparasite species in L. pictus mice showed host microhabitat partitioning; Fahrenholzia ehrlichi and Fahrenholzia texana were found only in the anterior dorsal area, Ornithonysus sp. occurred along the dorsal part, Ixodes species were restricted to the ears, and Steptolaelaps liomydis was found throughout the body. We also identified ectoparasite communities with distinct species composition in two rodent species that use contrasting macrohabitats (L. pictus, strictly terrestrial; Peromyscus perfulvus, mostly arboreal). The remaining and low abundant rodent species showed a species‐poor ectoparasite community composition. We conclude that habitat partitioning at both macro and microhabitat scales appeared to characterize the species‐rich ectoparasite community. Conversely, most rodent host species with low abundances showed a species‐poor ectoparasite community.  相似文献   

17.
为探究广东北部山区森林保护现状与发展规律,利用植被样方调查法和数量分析法,研究了粤北18个森林群落乔木层优势种群的频度和高频度(〉60%)种群的年龄结构。结果显示,1265个频度值按Raunkiaer的5个频度等级分析,A级(物种出现概率1%~20%)占78.38%,B级(21%~40%)占15.38%,C级(41%~60%)占2.91%,D级(61%~80%)占1.87%,E级(81%~100%)占1.46%;频度规律为A〉B〉C〉D〉E。在16个频度〉60%(D级和E级)的优势种群的年龄结构中,衰退种群有枫香(Liquidambar formosana)、杉木(Cunning-hamia lanceolata)、小红栲(Castanopsis carlesii)、马尾松(Pinus massoniana)、拟赤杨(Alniphyllum fortunei)、黄樟(Cinnamomum porrectum)、青栲(Castanopsis lamontii)和酸枣(Choerospondias axillarie);属于增长种群的有红锥(Castanopsis hystrix)、黧蒴(C.fissa)和罗浮栲(C.fabric);趋于稳定种群的有甜锥(Castanopsis eyrei)、木荷(Schima superba)、红楠(Machilus thunbergii)、罗浮柿(Diospyros morrisiana)和深山含笑(Michelia maudiae)。粤北森林经较长期的群落演替和自然保护,目前针叶树种群及落叶阔叶树种群的衰退,为地带性植被常绿阔叶林及其优势种群的发展奠定了基础。研究结果为粤北自然保护区的建设和可持续发展提供了参考。  相似文献   

18.
In nature, many insect species are attacked by more than one specialized species of parasitoid. We examine whether parasitoid aggregation among patches containing hosts can promote the coexistence of specialized parasitoids on the same host species. We construct models to analyze the effects of three types of parasitoid aggregation: direct density-dependent, inverse density-dependent, and density-independent aggregation. All three types of aggregation may facilitate coexistence, provided the parasitoid species show behavioral differences that produce different patterns of aggregation. By deriving general conditions of coexistence of parasitoids, we show that all three types of aggregation act to facilitate coexistence in the same way—by increasing the covariance between the distributions of susceptible hosts and the least common parasitoid. Although they act in the same way, in general the effect of density-independent aggregation in facilitating coexistence is greater than either direct or inverse density-dependent aggregation. This suggests that density-independent aggregation may have the greatest potential to facilitate the coexistence of specialize parasitoids using the same host.  相似文献   

19.
Soil nematode species diversity is often high, both at ecosystem and single soil-core scales. First, how can so many species coexist? There is evidence of niche partitioning, notably of physical space, but vast interspecific overlaps and trait plasticity seem equally common. It appears that coexistence of species with similar resource needs is made possible by small-scale disturbance and predation, which likely reduce local population sizes and interspecific competition. Regional processes such as dispersal, large-scale disturbance, and aggregation, which govern ecosystem level diversity, may also affect local species interactions and soil-core scale diversity. Second, what is the significance of having so many species, with so few trophic functions, for ecosystem processes? Focusing on bacterivore diversity, it is clear that species contributions to decomposition, likely to differ as a function of individual biologies, are concealed by the trophic group approach. However, considerable functional redundancy probably exists, which may explain why decomposition processes are maintained in highly disturbed soils despite the extinction of many species. Thus, soil nematode diversity is important for the long-term stability of soil functioning, and merits protection and further study.  相似文献   

20.
Four sympatric species of Fundulus (F. heteroclitus, F. majalis,F. diaphanus, and F. luciae) are distributed along tidal heightand salinity gradients such that F. heteroclitus co-occurs witheach species, while the remaining species rarely occur together.Feeding habitats of all the species are similar, and food hasbeen shown to limit population size of F. heteroclitus. Thispaper examines whether competition is an important structuringforce within this guild by addressing two questions: 1) is thespatial separation exhibited by three of the species due tophysiological barriers or due to competitive exlusion? and 2)when F. heteroclitus occurs with other Fundulus species doescompetition for resources take place? Laboratory studies indicate that all four species are tolerantof a wide range of environmental conditions; available evidencesuggests that physiological barriers are an unlikely explanationfor spatial segregation among some members of this guild. Competitiveexclusion seems a likely alternate explanation, but is supportedonly by studies of diet overlap. Similarly, only inference fromdiet overlap is available to answer the second question. A fieldexperiment is presented here in which F. heteroclitus and F.majalis were placed in enclosures separately and together. Competitionbetween these species appears to be important, and similar fieldexperiments are recommended to investigate competitive interactionsamong other species pairs within the genus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号