首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean (Glycine max[L.] Merr.) cell suspension cultures (cv. Williams 82) inoculated with the pathogenic bacteria Pseudomonas syringae pv. glycinea respond with a hypersensitive reaction (HR) when the bacteria express the avirulence gene avrA. A mRNA differential display was established for this system to allow the identification of genes induced during the HR. Six PCR-fragments (DD1–DD6) from the differential display analysis were identified, which are induced during the HR. Database searches revealed that the fragment DD1 encodes chalcone isomerase and DD2 was identified as ubiquitin. The fragment DD3 shares significant homology to the signalling molecule 14-3-3. The partial DD4 product is homologous to the enhancer of rudimentary from Drosophila and an uncharacterized homologue of it from Arabidopsis. The fragment DD5 is similar to glucose-6-phosphate dehydrogenase which provides NADPH to the cell. The PCR-product DD6 seems to be a new leucine-rich-repeat disease resistance gene from soybean, which is significantly induced during the HR. All of the identified genes are clearly induced during a HR in infected plants of the same cultivar, indicating that results from the cell culture model system can be transferred to intact plants. These studies show that complex mRNA differential display is a powerful tool to identify new induced gene in plant-pathogen interactions.  相似文献   

2.
Kiba A  Takata O  Ohnishi K  Hikichi Y 《Planta》2006,224(5):981-994
Pseudomonas cichorii causes necrotic leaf spots (NLS), while Pseudomonas syringae pv. tabaci induces a hypersensitive response (HR) in eggplant. P. cichorii induced cell death at 9 h after inoculation (HAI), reaching a maximum of around 24–30 HAI. On the other hand, cell death was induced 6 HAI with P. syringae pv. tabaci, reaching a maximum of around 12–18 HAI. Superoxide generation was observed in eggplant inoculated with both bacteria. DNA fragmentation, cytochrome c release into the cytosol and expression of defense-related genes such as PR-1 and hsr203J was also induced by inoculation with both bacteria, but these plant reactions were more rapidly induced in eggplant inoculated with P. syringae pv. tabaci rather than those with P. cichorii. Lipid peroxidation and induction of lipoxygenase (LOX) was drastically induced in eggplant inoculated with P. syringae pv. tabaci compared to P. cichorii-inoculated eggplant. Pharmacological studies showed that induction of the cell death, and the NLS or the HR in response to both bacteria was commonly associated with de novo protein synthesis, reactive oxygen species and caspase III-like protease. Interestingly, involvement of lipid peroxidation, LOX, serine protease, and DNase differed between induction of NLS and HR. These results suggest that programmed cell death might be closely associated not only with the HR but also NLS. However, there may be differences not only in the induction kinetics and level of plant responses but also in the infection-related responses between HR and NLS.  相似文献   

3.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

4.
Although extensive data has described the key role of salicylic acid (SA) in signaling pathogen-induced disease resistance, its function in physiological processes related to cell death is still poorly understood. Recent studies have explored the requirement of SA for mounting the hypersensitive response (HR) against an invading pathogen, where a particular cell death process is activated at the site of attempted infection causing a confined lesion. Biochemical data suggest that SA potentiates the signal pathway for HR by affecting an early phosphorylation-sensitive step preceding the generation of pro-death signals, including those derived from the oxidative burst. Accordingly, the epistatic relationship between cell death and SA accumulation, analyzed in crosses between lesion-mimic mutants (spontaneous lesion formation) and the transgenic nahG line (depleted in SA) places the SA activity in a feedback loop downstream and upstream of cell death. Exciting advances have been made in the identification of cellular protective functions and cell death suppressors that might operate in HR. Moreover, the spatio-temporal patterns of the SA accumulation (non-homogeneous distribution, biphasic kinetics) described in some HR lesions, may also reveal important clues for unraveling the complex cellular network that tightly balances pro- and anti-death functions in the hypersensitive cell death.  相似文献   

5.
Cell viability or cell death is an important variable to monitor in many studies of host/pathogen interactions. However for studies that focus on events within the first few hours of the interaction, many of the viability assays currently being used are either too laborious and time consuming or measure the cell's temporary metabolic state rather than irreversible cell death. Evans blue has proven over the years to be a dependable stain for microscopic determination of cell death. We have used this stain to develop a spectrophotometric procedure that allows rapid, reproducible quantification of the stain retained by dead cells. This spectrophotometric procedure was used to compare plant/bacteria interactions involving either soybean/Pseudomonas syringae pv. glycinea or tobacco/P. syringae pv. syringae. Relative increases in cell death during these interactions in suspension cell systems were measured by both the spectrophotometric and microscopic technique and found to be similar. The spectrophotometric procedure was also adapted for leaf disc assays.Abbreviations HR hypersensitive response - SDS sodium dodecyl sulfate  相似文献   

6.
To identify genes involved in plant programmed cell death (PCD), changes in gene expression during PCD in a model system of suspension-cultured tomato cells were studied. In this system, cell death is triggered by treatment with camptothecin, an inhibitor of topoisomerase I. Cell death was accompanied by internucleosomal DNA degradation, indicating that the cell death process shares similarities with apoptosis in animals. Tomato homologues of DAD1 and HSR203, two genes that have been implicated in PCD, were isolated. During camptothecin-induced PCD tomato DAD1 mRNA levels roughly halve, while tomato HSR203 mRNA levels increase 5-fold. A differential display approach was used to identify novel genes that show changes in expression levels during camptothecin-induced PCD. This resulted in isolation of two up-regulated (CTU1 and CTU2) and four down-regulated (CTD1, CTD2, CTD4, and CTD5) cDNA clones. CTU1 shows high homology to various gluthatione S-transferases, whereas CTU2 is as yet unidentified. CTD1 is highly similar to Aux/IAA early-auxin-responsive genes. CTD2 corresponds to the tomato RSI-1 gene, CTD4 is an unknown clone, and CTD5 shows limited homology with a proline-rich protein from maize. Addition of the calcium channel blocker lanthanum chloride prevented camptothecin-induced cell death. The effect of lanthanum chloride on camptothecin-induced gene expression was studied to discriminate between putative cell death genes and general stress genes. The possible role of the various predicted gene products in plant PCD is discussed.  相似文献   

7.
An increasing number of reports indicate that single-celled organisms are able to die following what seems to be an ordered program of cell death with strong similarities to apoptosis from higher eukaryotes. DNA degradation and several other apoptotic-like processes have also been described in the parasitic protozoa Leishmania. However, the existence of an apoptotic death in this parasite is still a matter of controversy. Our results indicate that most of the processes of macromolecular degradation and organelle dysfunction observed in mammalian cells during apoptosis can also be reproduced in promastigotes of the genus Leishmania when incubated at temperatures above 38°C. These processes can be partially reversed by the expression of the anti-apoptotic mammalian gene Bcl-XL, which suggests that this family of apoptosis-regulating proteins was present very early in the evolution of eukaryotic cells.  相似文献   

8.
A previous study had indicated that scavengers of reactive oxygen species (ROS) delayed cell death (the hypersensitive response (HR)) triggered in epidermal cells of intact, resistant, cowpea ( Vigna unguiculata (L.) Walp) leaves by the monokaryotic stage of the cowpea rust fungus ( Uromyces vignae Barclay race 1). This HR had been monitored by cell autofluorescence, which occurs after protoplast collapse. In the present study, when cytoplasmic disorganization was used to monitor cell death more directly, ROS-scavengers, superoxide dismutase, catalase, horseradish peroxidase, and desferal-Mn(IV) had no effect on HR development. Cytological staining for superoxide or hydrogen peroxide generation also did not reveal the presence of ROS before or during the early stages of the HR, but did, as in the previous study, suggest a role in the autofluorescence and browning of invaded cells that occur following protoplast collapse. Staining of plant mitochondria with nitroblue tetrazolium, possibly attributable to increased dehydrogenase activity but not superoxide generation, occurred transiently around invasion hyphae (monokaryotic stage of the fungus) or haustoria (dikaryotic stage) of the fungus as they entered a cell in the susceptible or resistant cultivar. Around invasion hyphae in epidermal cells in resistant plants, this staining diminished as cytoplasmic streaming stopped, and gradually disappeared as cell death progressed. These data are consistent with other evidence that rust fungi initially negate non-specific defensive responses in both resistant and susceptible cells as part of the establishment of biotrophy. They also suggest that the HR in the cowpea–cowpea rust fungus pathosystem is not triggered by an oxidative burst.  相似文献   

9.
10.
11.
The tomato AGC protein kinase Adi3 is known to function as a suppressor of PCD and silencing of Adi3 leads to spontaneous cell death on leaves and stems. In an effort to isolate Adi3 interacting proteins, a yeast two-hybrid screen was carried out and identified the autophagy protein Atg8h as an Adi3 interactor. This interaction occurred independent of the kinase activity status of Adi3. Silencing of genes involved in autophagy is known to eliminate the restriction of pathogen-induced PCD to a few cells and leads to run away PCD. Cosilencing Adi3 with several autophagy genes lead to the same run away cell death suggesting Adi3 may be involved in autophagic regulation of PCD.  相似文献   

12.
Programmed cell death in cell cultures   总被引:21,自引:0,他引:21  
In plants most instances of programmed cell death (PCD) occur in a number of related, or neighbouring, cells in specific tissues. However, recent research with plant cell cultures has demonstrated that PCD can be induced in single cells. The uniformity, accessibility and reduced complexity of cell cultures make them ideal research tools to investigate the regulation of PCD in plants. PCD has now been induced in cell cultures from a wide range of species including many of the so-called model species. We will discuss the establishment of cell cultures, the fractionation of single cells and isolation of protoplasts, and consider the characteristic features of PCD in cultured cells. We will review the wide range of methods to induce cell death in cell cultures ranging from abiotic stress, absence of survival signals, manipulation of signal pathway intermediates, through the induction of defence-related PCD and developmentally induced cell death.  相似文献   

13.
14.
Thermographic visualization of cell death in tobacco and Arabidopsis   总被引:4,自引:0,他引:4  
Pending cell death was visualized by thermographic imaging in bacterio‐opsin transgenic tobacco plants. Cell death in these plants was characterized by a complex lesion phenotype. Isolated cell death lesions were preceded by a colocalized thermal effect, as previously observed at sites infected by tobacco mosaic virus (TMV) ( Chaerle et al. 1999 Nature Biotechnology 17, 813–816). However, in most cases, a coherent front of higher temperature, trailed by cell death, initiated at the leaf base and expanded over the leaf lamina. In contrast to the homogenous thermal front, cell death was first visible close to the veins, and subsequently appeared as discrete spots on the interveinal tissue, as cell death spread along the veins. Regions with visible cell death had a lower temperature because of water evaporation from damaged cells. In analogy with previous observations on the localized tobacco–TMV interaction ( Chaerle et al. 1999 ), the kinetics of thermographic and continuous gas exchange measurements indicated that stomatal closure preceded tissue collapse. Localized spontaneous cell death could also be presymptomatically visualized in the Arabidopsis lsd2 mutant.  相似文献   

15.
16.
Summary The gene coding for the phaseolotoxin-insensitive ornithine carbamoyltransferase (OCTase) fromPseudomonas syringae pv.phaseolicola has been cloned and sequenced. The gene has a deduced coding capacity for a polypeptide with a calculated M, of 36520 daltons. Comparison of the amino acid sequence of the OCTase enzymes encoded by theP. aeruginosa argF and theEscherichia coli argI andargF genes with the deduced sequence of the newly identified gene shows that 79 amino acid residues are strictly conserved in all four polypeptides; among these 7 out of 9 residues are involved in enzyme function. Of three amino acid regions that have been implicated in substrate binding or catalysis, two are strictly conserved, and the third involved in carbamoylphosphate binding differs. This correlates well with published data showing that phaseolotoxin competes for the carbamoylphosphate binding site in the phaseolotoxin-sensitive OCTases. We propose that the gene be namedargK.  相似文献   

17.
A sequence homologous to an internal fragment 0.75 kb BstXI of the Pseudomonas syringae pv. syringae hrpZ gene was identified in Pseudomonas syringae pv. aptata NCPPB 2664, the causal agent of bacterial blight in sugar beet, lettuce and other plants, and in E. coli DH10B (pCCP1069) containing the P. syringae pv. aptata hrp gene cluster. PCR with oligonucleotides, based on the hrpZPss gene and used as primers with the total genomic DNA of P. syringae pv. aptata, amplified a 1 kb fragment that hybridized with the probe in highly stringent conditions. The amplicon was cloned into the pGEM-T® plasmid vector, amplified in E. coli DH5 and sequenced. The sequence showed 95%, 83% and 61% identity with those of hrpZPss, hrpZPsg and hrpZPst genes encoding the harpins of the P. syringae pv. syringae, glycinea and tomato, respectively. The amplicon was cloned into the pMAL® expression system. The expressed protein, fused with maltose-binding protein, was cleaved with a specific protease factor Xa, and purified using affinity chromatography. On the basis of the amino acid sequence and its ability to induce HR in tobacco leaves, it was identified as a P. syringae pv. aptata harpin.  相似文献   

18.
We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.  相似文献   

19.
The role of salicylic acid (SA) in events occurring before cell death during the hypersensitive reaction (HR) was investigated in leaves of wild-type tobacco Samsun NN and in transgenic lines expressing salicylate hydroxylase (35S-SH-L). Challenge of 35S-SH-L tobacco with avirulent strains of Pseudomonas syringae gave rise to symptoms resembling those normally associated with a compatible response to virulent strains in terms of visible phenotype, kinetics of bacterial multiplication, and escape from the infection site. Compared with responses in wild-type tobacco, both the onset of plant cell death and the induction of an active oxygen species-responsive promoter (AoPR1-GUS) were delayed following challenge of 35S-SH-L plants with avirulent bacteria. The oxidative burst occurring after challenge with avirulent bacteria was visualized histochemically and quantified in situ. H2O2 accumulation at reaction sites was evident within 1 h after inoculation in wild-type tobacco, whereas in 35S-SH-L plants the onset of H2O2 accumulation was delayed by 2-3 h. The delay in H2O2 generation was correlated with a reduction in the transient rise in SA that usually occurred within 1-2 h following inoculation in wild-type plants. Our data indicate that an early transient rise in SA potentiates the oxidative burst, with resultant effects on accumulation of H2O2, plant cell death and also defence-gene induction, factors that together may determine the outcome of plant-pathogen interactions.  相似文献   

20.
Murine preimplantation embryos exposed to hyperglycemia experience decreased glucose transport, and overexpression of the proapoptotic protein BAX, leading to increased apoptosis. These changes may account for the increased rates of miscarriages and malformations seen in women with diabetes mellitus. To test whether p53 expression is necessary for hyperglycemia-induced apoptosis, p53+/+, +/-, -/- embryos were obtained by superovulation. Two-cell embryos were cultured to a blastocyst stage in 52 mM D- or L-glucose. Apoptosis was detected using terminal dUTP nick end labeling (TUNEL) assays. In vivo studies were performed in the same manner using blastocysts recovered from streptozotocin-induced diabetic mothers. Both in vitro and in vivo studies showed that wildtype embryos had a significantly higher percentage of TUNEL-positive nuclei than p53+/- and -/- embryos. To test whether p53 is upstream of BAX, immunofluorescent confocal microscopy and immunoprecipitation/ immunoblotting were performed on blastocysts cultured in high vs. control glucose conditions. Blastocysts from p53+/+ mice exhibited increased BAX staining vs. p53+/- and -/- embryos. Next, to determine whether a decrease in glucose transport was upstream or downstream of p53, deoxyglucose transport was measured in individual blastocysts from p53+/+ and +/- diabetic vs. nondiabetic mice. Embryos from diabetic p53+/- mice exhibit a 44% decrease in glucose transport, similar to the 38% decrease seen in embryos from diabetic p53+/+ mice. Taken together, these results strongly indicate that p53 plays a role in hyperglycemia-induced apoptosis, upstream of BAX overexpression and downstream of the decrease in glucose transport experienced by the mouse preimplantation embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号