首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct immobilization of glucose oxidase (GOD) on TiO2/SiO2 nanocomposite and its application as glucose biosensor were investigated. The room-temperature phosphorescence of TiO2/SiO2 nanocomposite can be quenched by hydrogen peroxide (H2O2). The detection of glucose may be accomplished by monitoring the formation of hydrogen peroxide which generated in the oxidation process of glucose with the catalysis of GOD. To our surprise, by using a 96-hole polyporous plate accessory of fluorescence spectrophotometer, the biosensor exhibits excellent linear response to glucose concentrations ranging from 1.0 × 10−9 to 1.0 × 10−2 M with a detection limit of 1.2 × 10−10 M. The TiO2/SiO2 nanocomposite can be used as both supporting material and signal transducer. The phosphorescence intensity and color of the biosensor change obviously and even could be observed with naked eyes by continuous addition of glucose. Based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite, a new method of solid substrate-room-temperature phosphorimetry (SS-RTP) for glucose determination is proposed. A glucose biosensor was fabricated with wide determination concentration range, low detection limit, high sensitivity, and fast response time. And the biosensor has been successfully applied to the determination of glucose in human blood serum. The coacervation of GOD enzyme and its interaction with TiO2/SiO2 nanocomposite enlarge the surface area and enhance the chemical stability of GOD. The nice biocompatibility, large surface area, good chemical stability and nontoxicity of the TiO2/SiO2 nanocomposite have made this material suitable for functioning as biosensor.  相似文献   

2.
A simple, sensitive and fully automated analytical method for the analysis of codeine in human plasma is presented. Samples are added with oxycodone, used as internal standard (I.S.), and directly loaded in the autosampler tray. An on-line sample clean-up system based on solid-phase extraction (SPE) cartridges (Bond-Elut C2, 20 mg) and valve switching (Prospekt) is used. Isocratic elution improved reproducibility and allowed the recirculation of the mobile phase. A Hypersil BDS C18, 3 μm, 10×0.46 cm column was used and detection was done by UV monitoring at 212 nm. Retention times of norcodeine (codeine metabolite), codeine and oxycodone (I.S.) were 5.5, 6.4 and 9.1 min, respectively. Morphine was left to elute in the chromatographic front. Detection limit for codeine was 0.5 μg l−1 and inter-assay precision (expressed as relative standard deviation) and accuracy (expressed as relative error) measured at 2 μg l−1 were 5.03% and 1.82%. Calibration range was 2–140 μg l−1.  相似文献   

3.
Net ecosystem exchange of CO2 (NEE) was measured during 2005 using the eddy covariance (EC) technique over a reed (Phragmites australis (Cav.) Trin. ex Steud.) wetland in Northeast China (121°54′E, 41°08′N). Diurnal NEE patterns varied markedly among months. Outside the growing season, NEE lacked a diurnal pattern and it fluctuated above zero with an average value of 0.07 mg CO2 m−2 s−1 resulting from soil microbial activity. During the growing season, NEE showed a distinct V-like diel course, and the mean daily NEE was −7.48 ± 2.74 g CO2 m−2 day−1, ranging from −13.58 g CO2 m−2 day−1 (July) to −0.10 g CO2 m−2 day−1 (October). An annual cycle was also apparent, with CO2 uptake increasing rapidly in May, peaking in July, and decreasing from August. Monthly cumulative NEE ranged from −115 ± 24 g C m−2 month−1 (the reed wetland was a CO2 sink) in July to 75 ± 16 g C m−2 month−1 (CO2 source) in November. The annual CO2 balance suggests a net uptake of −65 ± 14 g C m−2 year−1, mainly due to the gains in June and July. Cumulative CO2 emission during the non-growing season was 327 g C m−2, much greater than the absolute value of the annual CO2 balance, which proves the importance of the wintertime CO2 efflux at the study site. The ratio of ecosystem respiration (Reco) to gross primary productivity (GPP) for this reed ecosystem was 0.95, indicating that 95% of plant assimilation was consumed by the reed plant or supported the activities of heterotrophs in the soil. Daytime NEE values during the growing season were closely related to photosynthetically active radiation (PAR) (r2 > 0.63, p < 0.01). Both maximum ecosystem photosynthesis rate (Amax) and apparent quantum yield (α) were season-dependent, and reached their peak values in July (1.28 ± 0.11 mg CO2 m−2 s−1, 0.098 ± 0.027 μmol CO2 μmol−1 photon, respectively), corresponding to the observed maximum NEE in July. Ecosystem respiration (Reco) relied on temperature and soil water content, and the mean value of Q10 was about 2.4 with monthly variation ranging from 1.8 to 4.1 during 2005. Annual methane emission from this reed ecosystem was estimated to be about 3 g C m−2 year−1, and about 5% of the net carbon fixed by the reed wetland was released to the atmosphere as CH4.  相似文献   

4.
One and a half year-old Ginkgo saplings were grown for 2 years in 7 litre pots with medium fertile soil at ambient air CO2 concentration and at 700 μmol mol−1 CO2 in temperature and humidity-controlled cabinets standing in the field. In the middle of the 2nd season of CO2 enrichment, CO2 exchange and transpiration in response to CO2 concentration was measured with a mini-cuvette system. In addition, the same measurements were conducted in the crown of one 60-year-old tree in the field. Number of leaves/tree was enhanced by elevated CO2 and specific leaf area decreased significantly.CO2 compensation points were reached at 75–84 μmol mol−1 CO2. Gas exchange of Ginkgo saplings reacted more intensively upon CO2 than those of the adult Ginkgo. On an average, stomatal conductance decreased by 30% as CO2 concentration increased from 30 to 1000 μmol mol−1 CO2. Water use efficiency of net photosynthesis was positively correlated with CO2 concentration levels. Saturation of net photosynthesis and lowest level of stomatal conductance was reached by the leaves of Ginkgo saplings at >1000 μmol mol−1 CO2. Acclimation of leaf net CO2 assimilation to the elevated CO2 concentration at growth occurred after 2 years of exposure. Maximum of net CO2 assimilation was 56% higher at ambient air CO2 concentration than at 700 μmol mol−1 CO2.  相似文献   

5.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

6.
A sequential on-line preconcentration and separation system for Cr(VI) and Cr(III) species determination was developed in this work. For this purpose, a microcolumn filled with nanostructured α-alumina was used for on-line retention of Cr species in a flow-injection system. The method involves the selective elution of Cr(VI) with concentrated ammonia and Cr(III) with 1 mol L−1 nitric acid for sequential injection into an electrothermal atomic absorption spectrometer (ETAAS).Analytical parameters including pH, eluent type, flow rates of sample and eluent, interfering effects, etc., were optimized. The preconcentration factors for Cr(VI) and Cr(III) were 41 and 18, respectively. The limit of detection (LOD) was 1.9 ng L−1 for Cr(VI) and 6.1 ng L−1 for Cr(III). The calibration graph was linear with a correlation coefficient of 0.999. The relative standard deviation (RSD) was 8.6% for Cr(VI) and 6.1% for Cr(III) (c=10 μg L−1, n=10, sample volume=25 mL). Verification of the accuracy was carried out by analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”) with a reported Cr content of 20.40±0.24 μg L−1. Using the proposed methodology the total Cr content, computed as sum of Cr(III) and Cr(VI), in this SRM was 20.26±0.96 μg L−1. The method was successfully applied to the determination of Cr(VI) and Cr(III) species in parenteral solutions. Concentration of Cr(III) species was found to be in the range of 0.29–3.62 μg L−1, while Cr(VI) species was not detected in the samples under study.  相似文献   

7.
Aluminum toxicity is an important stress factor in acid soils. Growth, respiration and permeability properties of root cells were studied in five cultivars of Lotus corniculatus subjected to aluminum (Al) or low pH stress. The cultivars showed significant differences in root elongation under stress conditions, which correlated with changes in membrane potential (EM) of root cortical cells. A pH drop from 5.5 to 4.0 resulted in significant membrane depolarization and root growth inhibition. The strongest inhibition was observed in cv. São Gabriel (33.6%) and least in cv. UFRGS (25.8%). Application of an extremely high Al concentration (2 mM) stopped the root growth in cv. INIA Draco, while inhibition in cv. UFRGS reached only 75%.The EM values of cortical cells of Lotus roots varied between −115 and −144 mV. Treatment with 250 μM of AlCl3 (pH 4) resulted in rapid membrane depolarization. The extent of the membrane depolarization ranged between 51 mV (cv. UFGRS) and 16 mV (cv. INIA Draco). The membrane depolarization was followed by a loss of K+ from Al-treated roots (2 mM Al) and resulted in a decrease of the diffusion potential (ED). The total amount of K+ in Al-treated roots dropped from 31.4 to 16.8 μmol g−1 FW in sensitive cv. INIA Draco, or from 26.1 to 22.7 μmol g−1 FW in tolerant cv. UFGRS. The rate of root respiration under control conditions as well as under Al treatment was higher in cv. INIA Draco than in cv. UFRGS. Al-induced inhibition of root respiration was 21–34% of the control.  相似文献   

8.
Prostaglandin I2 potentiated the paw swelling induced by carrageenin in rats. Prostaglandin I2 (0.1 μg) showed similar activity to PGE1 (0.01 μg). This potentiating property disappeared in 60 minutes and was completely abolished by diphenhydramine (25 mg kg−1, i.p.). In vascular permeability tests, PGI2 itself (2.5 × 10−10 mol, 88 ng) caused no dye leakage reaction, but PGE1 (2.5 × 10−10 mol, 88.5 ng) caused a significant dye leakage. This effect of PGE1 was statistically significant compared with vehicle- or PGI2-treated group (p<0.05). Prostaglandin I2 potentiated the increased vascular permeability induced by 5-hydroxytriptamine (2.5 × 10−10 mol), bradykinin (5 × 10−10 mol) and histamine (2 × 10−10 to 2 × 10−8 mol). The potentiation was the most evidence in the case of histamine.  相似文献   

9.
Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 μmol L−1) and inorganic monomeric Al (Ali) concentrations (27 μmol L−1) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 μmol L−1 (Alt) and 13 μmol L−1 (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al.  相似文献   

10.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

11.
The spatial upscaling of soil respiration from field measurements to ecosystem levels will be biased without studying its spatial variation. We took advantage of the unique spatial gradients of an oak–grass savanna ecosystem in California, with widely spaced oak trees overlying a grass layer, to study the spatial variation in soil respiration and to use these natural gradients to partition soil respiration according to its autotrophic and heterotrophic components. We measured soil respiration along a 42.5 m transect between two oak trees in 2001 and 2002, and found that soil respiration under tree canopies decreased with distance from its base. In the open area, tree roots have no influence on soil respiration. Seasonally, soil respiration increased in spring until late April, and decreased in summer following the decrease in soil moisture content, despite the further increase in soil temperature. Soil respiration significantly increased following the rain events in autumn. During the grass growing season between November and mid-May, the average of CO2 efflux under trees was 2.29 μmol m−2 s−1, while CO2 efflux from the open area was 1.40 μmol m−2 s−1. We deduced that oak root respiration averaged as 0.89 μmol m−2 s−1, accounting for 39% of total soil respiration (oak root + grass root + microbes). During the dry season between mid-May and October, the average of CO2 efflux under trees was 0.87 μmol m−2 s−1, while CO2 efflux from the open areas was 0.51 μmol m−2 s−1. Oak root respiration was 0.36 μmol m−2 s−1, accounting for 41% of total soil respiration (oak root + microbes). The seasonal pattern of soil CO2 efflux under trees and in open areas was simulated by a bi-variable model driven by soil temperature and moisture. The diurnal pattern was influenced by tree physiology as well. Based on the spatial gradient of soil respiration, spatial analysis of crown closure and the simulation model, we spatially and temporally upscaled chamber measurements to the ecosystem scale. We estimated that the cumulative soil respiration in 2002 was 394 gC m−2 year−1 in the open area and 616 gC m−2 year−1 under trees with a site-average of 488 gC m−2 year−1.  相似文献   

12.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

13.
Laccase-catalyzed oxidation of phenolic compounds in organic media   总被引:1,自引:0,他引:1  
Rhus vernificera laccase-catalyzed oxidation of phenolic compounds, i.e., (+)-catechin, (−)-epicatechin and catechol, was carried out in selected organic solvents to search for the favorable reaction medium. The investigation on reaction parameters showed that optimal laccase activity was obtained in hexane at 30 °C, pH 7.75 for the oxidation of (+)-catechin as well as for (−)-epicatechin, and in toluene at 35 °C, pH 7.25 for the oxidation of catechol. Ea and Q10 values of the biocatalysis in the reaction media of the larger log p solvents like isooctane and hexane were relatively higher than those in the reaction media of lower log p solvents like toluene and dichloromethane. Maximum laccase activity in the organic media was found with 6.5% of buffer as co-solvent. A wider range of 0–28 μg protein/ml in hexane than that of 0–16.7 μg protein/ml in aqueous medium was observed for the linear increasing conversion of (+)-catechin. The kinetic studies revealed that in the presence of isooctane, hexane, toluene and dichloromethane, the Km values were 0.77, 0.97, 0.53 and 2.9 mmol/L for the substrate of (+)-catechin; 0.43, 0.34, 0.14 and 3.4 mmol/L for (−)-epicatechin; 2.9, 1.8, 0.61 and 1.1 mmol/L for catechol, respectively, while the corresponding Vmax values were 2.1 × 10−2, 2.3 × 10−2, 0.65 × 10−2 and 0.71 × 10−2 δA/μg protein min); 1.8 × 10−2, 0.88 × 10−2, 0.19 × 10−2 and 1.0 × 10−2 δA/μg protein min); 0.48 × 10−2, 0.59 × 10−2, 0.67 × 10−2 and 0.54 × 10−2 δA/μg protein min), respectively. FT-IR indicated the formation of probable dimer from (+)-catechin in organic solvent. These results suggest that this laccase has higher catalytic oxidation capacity of phenolic compounds in suitable organic media and favorite oligomers could be obtained.  相似文献   

14.
The effects of porphyritic andesite on the hydrolysis and acidogenesis of solid organic wastes were investigated by batch and continuous experiments using a rotational drum fermentation system. The results of the batch experiment show that if porphyritic andesite (1%, 3%, and 5% reactants) is added initially, the pH level increases and hydrolysis and acidogenesis are accelerated. The highest surface based hydrolysis constant (26.4 × 10−3 kg m−2 d−1) and volatile solid degradation ratio (43.3%) were obtained at a 1% porphyritic andesite addition. In the continuous experiment, porphyritic andesite elevated the first order hydrolysis constant from 13.10 × 10−3 d−1 to 18.82 × 10−3 d−1. A particle mean diameter reduction rate of 33.05 μm/d and a volatile solid degradation rate of 3.53 g/L d−1 were obtained under the hydraulic retention time of 4, 8, 12 and 16 d.  相似文献   

15.
The goal of the present study was to assess how genetic loss of microsomal prostaglandin E2 synthase-1 (mPGES-1) affects acute cardiac ischemic damage after coronary occlusion in mice. Wild type (WT), heterozygous (mPGES-1+/−), and homozygous (mPGES-1−/−) knockout mice were subjected to left coronary artery occlusion. At 24 h, myocardial infarct (MI) volume was measured histologically. Post-MI survival, plasma levels of creatine phosphokinase (CPK) and cardiac troponin-I, together with MI size, were similar in WT, mPGES-1+/− and mPGES-1−/− mice. In contrast, post-MI survival was reduced in mPGES-1−/− mice pretreated with I prostanoid receptor (IP) antagonist (12/16) compared with vehicle-treated controls (13/13 mPGES-1−/−) together with increased CPK and cardiac troponin-I release. The deletion of mPGES-1 in mice results in increased prostacyclin I2 (PGI2) formation and marginal effects on the circulatory prostaglandin E2 (PGE2) level. We conclude that loss of mPGES-1 results in increased PGI2 formation, and in contrast to inhibition of PGI2, without worsening acute cardiac ischemic injury.  相似文献   

16.
NO is crucial for endothelial function and vascular health. Plasma nitrite (NO2) is the main oxidation product of NO and has been shown to reflect changes in eNOS activity. We hypothesized that plasma NO2 response to physical exercise stress along with physiological endothelial function would be reduced with increasing severity of vascular disease. Subject groups were: (a) risk factors but no vascular disease (RF); (b) Type 2 diabetes with no vascular disease (DM); (c) diagnosed peripheral arterial disease (PAD); and (d) DM + PAD. Venous blood was drawn at rest and 10 min following maximal exercise. Plasma samples were analyzed by reductive chemiluminescence. Brachial diameters were imaged prior to, during and following 5 min of forearm occlusion (BAFMD). There were no differences in resting plasma NO2 or BA diameters between groups. The PAD groups had lower age adjusted BAFMD responses (p  0.05). Within group analysis revealed an increase in NO2 in the RF group (+39.3%), no change in the DM (−15.51%), and a decrease in the PAD (−44.20%) and PAD + DM (−39.95%). This was maintained after adjusting for age and VO2peak (p  0.05). ΔNO2 and BAFMD were the strongest independent predictors of VO2peak in multivariate linear regression. These findings suggest ΔNO2 discriminates severity of cardiovascular disease risk, is related to endothelial function and predicts exercise capacity.  相似文献   

17.
The purpose of this study was to localize vasopressin (VP) V1a receptor in stomach and to characterize the role of VP in the regulation of gastric motility in rats. Double staining was used to locate the V1a receptor in the gastric body of the rat. The contraction of the circular muscle strips of gastric body was monitored by a polygraph. V1a receptor was expressed on the neurons of myenteric plexus of the gastric body. VP (10− 10–10− 6 M) caused a concentration-dependent contractile effect on the circular muscle strips of gastric body in vitro. V-1880 ([deamino-Pen1, O-Me-Tyr2, Arg8]-Vasopressin, 10− 7 M), a V1 receptor antagonist, inhibited the spontaneous contraction of the strips. Tetradotoxin (TTX, 10− 6 M) and V-1880 (10− 7 M) abolished the excitatory effect of VP. Atropine (10− 6 M) partially inhibited VP-induced excitatory effect on the muscle strips but hexamethonium (10− 4 M) did not influence it. These results suggest that V1a receptor was expressed on the neurons of myenteric nerves. The cholinergic nerve was involved in the excitatory effect of VP on the contraction of gastric body.  相似文献   

18.
Can elevated CO(2) improve salt tolerance in olive trees?   总被引:2,自引:0,他引:2  
We compared growth, leaf gas exchange characteristics, water relations, chlorophyll fluorescence, and Na+ and Cl concentration of two cultivars (‘Koroneiki’ and ‘Picual’) of olive (Olea europaea L.) trees in response to high salinity (NaCl 100 mM) and elevated CO2 (eCO2) concentration (700 μL L−1). The cultivar ‘Koroneiki’ is considered to be more salt sensitive than the relatively salt-tolerant ‘Picual’. After 3 months of treatment, the 9-month-old cuttings of ‘Koroneiki’ had significantly greater shoot growth, and net CO2 assimilation (ACO2) at eCO2 than at ambient CO2, but this difference disappeared under salt stress. Growth and ACO2 of ‘Picual’ did not respond to eCO2 regardless of salinity treatment. Stomatal conductance (gs) and leaf transpiration were decreased at eCO2 such that leaf water use efficiency (WUE) increased in both cultivars regardless of saline treatment. Salt stress increased leaf Na+ and Cl concentration, reduced growth and leaf osmotic potential, but increased leaf turgor compared with non-salinized control plants of both cultivars. Salinity decreased ACO2, gs, and WUE, but internal CO2 concentrations in the mesophyll were not affected. eCO2 increased the sensitivity of PSII and chlorophyll concentration to salinity. eCO2 did not affect leaf or root Na+ or Cl concentrations in salt-tolerant ‘Picual’, but eCO2 decreased leaf and root Na+ concentration and root Cl concentration in the more salt-sensitive ‘Koroneiki’. Na+ and Cl accumulation was associated with the lower water use in ‘Koroneiki’ but not in ‘Picual’. Although eCO2 increased WUE in salinized leaves and decreased salt ion uptake in the relatively salt-tolerant ‘Koroneiki’, growth of these young olive trees was not affected by eCO2.  相似文献   

19.
Nitrogenase activity and the rate of photosynthesis were measured simultaneously in Azolla by a continuous gas flow system. The mode of interaction between light, photosynthesis and nitrogenase activity was analysed.Nitrogenase activity dropped off when either Azolla plants or the cyanobiont Anabaena were transferred from light to dark. This decline was immediate and was independent of length or intensity of the prior light phase. Reillumination restored nitrogenase activity.Nitrogenase activity did not depend on the rate of photosynthesis at light intensities below 10 μE m−2 s−1. Its activity was saturated at 200 μE m−2 s−1 while CO2 fixation was saturated at a light intensity of 850 μE m−2 s−1. Azolla photosynthetic activity followed the absorption spectrum of chlorophyll a, while nitrogenase activity markedly increased between 690 and 710 nm. Inhibition of photosynthesis by DCMU was accompanied by an increase in nitrogenase activity. These results suggest direct light regulation of nitrogenase activity in Azolla independent of CO2 fixation, and a possible inhibition of nitrogenase activity by the oxygen produced in photosynthesis.  相似文献   

20.
Fragments of chopped lung from indomethacin treated guinea-pigs had an anti-aggregating effect when added to human platelet rich plasma (PRP), probably due to the production of prostacyclin (PGI2) since the effect was inhibited by 15-hydroperoxy arachidonic acid (15-HPAA, 10 μg ml−1). Both 15-HPAA (1–20 μg ml−1 min−1) and 13-hydroperoxy linoleic acid (13-HPLA, 20 μg ml−1 min−1) caused a marked enhancement of the anaphylactic release of histamine, slow-reacting substance of anaphylaxis (SRS-A) and rabbit aorta contracting substance (RCS) from guinea-pig isolated perfused lungs. This enhancement was not reversed by the concomitant infusion of either PGI2 (5 μg ml−1 min−1) or 6-oxo-prostaglandin F (6-oxo-PGF, 5 μg ml−1 min−1). Anaphylactic release of histamine and SRS-A from guinea-pig perfused lungs was not inhibited by PGI2 (10 ng - 10 μg ml−1 min−1) but was inhibited by PGE2 (5 and 10 μg ml−1 min−1). Antiserum raised to 5,6-dihydro prostacyclin (PGI1) in rabbits, which also binds PGI2, had no effect on the release of anaphylactic mediators. The fatty acid hydroperoxides may enhance mediator release either indirectly by augmenting thromboxane production or by a direct effect on sensitized cells. Further experiments to distinguish between these alternatives are described in the accompanying paper (27).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号