首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit.  相似文献   

2.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 396/C-1 has been determined. Sugar and methylation analyses together with 1H and 13C NMR spectroscopy were the main methods used. Inter-residue correlations were determined by 1H,1H-NOESY, 1H,13C-heteronuclear multiple-bond correlation and dipole-dipole cross-correlated relaxation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. Analysis of NMR data reveals that on average the PS consists of approximately 13 repeating units and indicates that the biological repeating unit contains an N-acetylglucosamine residue at its reducing end. This structure is different to that reported for the O-antigen polysaccharide from E. coli O126. Monospecific anti-E. coli O126 rabbit serum from The International Escherichia and Klebsiella Centre did not distinguish between the E. coli strain 396/C-1 and the E. coli O126 reference strain, neither in slide agglutination nor in an indirect enzyme immunoassay. Subsequent successful serotyping of the E. coli strain 396/C-1 showed it to be E. coli O126:K+:H27.  相似文献   

3.
The structure of the O-antigenic polysaccharide (PS) from the enteroaggregative Escherichia coli strain 522/C1 has been determined. Component analysis and (1)H and (13)C NMR spectroscopy techniques were used to elucidate the structure. Inter-residue correlations were determined by (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [ structure: see text]. Analysis of NMR data reveals that on average the PS consists of four repeating units and indicates that the biological repeating unit contains an N-acetylgalactosamine residue at its reducing end. Serotyping of the E. coli strain 522/C1 showed it to be E. coli O 178:H7. Determination of the structure of the O-antigen PS of the international type strain from E. coli O 178:H7 showed that the two polysaccharides have identical repeating units. In addition, this pentasaccharide repeating unit is identical to that of the capsular polysaccharide from E. coli O9:K 38, which also contains O-acetyl groups.  相似文献   

4.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

5.
The O-antigen structure of Shigella dysenteriae type 2 was reinvestigated using chemical modifications along with high-resolution 2D (1)H and (13)C NMR spectroscopy. The O-antigen was found to contain a pyruvic acid acetal, which was overlooked in an early study, and the following revised structure of the pentasaccharide repeating unit was established: where approximately 70% GlcNAc residues bear an O-acetyl group at position 3. The O-antigen of Escherichia coli O112ac was found to have the same carbohydrate structure but to lack O-acetylation.  相似文献   

6.
The structure of the antigenic O-polysaccharide (O-PS) of the lipopolysaccharide (LPS) produced by the enterohemorrhagic strain of Escherichia coli O48:H21 (EHEC) has been elucidated. The O-PS obtained by mild acid hydrolysis of the LPS had [alpha]D +95 (water) and was composed of L-rhamnose (L-Rha), D-galactose (D-Gal), 2-amino-2-deoxy-D-glucose (D-GlcN), 2-amino-2-deoxy-D-galactose (D-GalN), and D-galacturonic acid (D-GalA) (1:1:1:1:1). From the results of methylation analysis, mass spectrometry, 2D NMR, and DOC-PAGE, the O-PS was shown to be a high molecular mass polymer of a repeating pentasaccharide unit having the structure: [structure: see text]. The D-Gal pA non-reducing end groups in the O-PS were partially O-acetylated (approximately 30%) at the O-2 and O-3 positions and the degree of acetylation was variable from batch to batch cell production.  相似文献   

7.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O176 has been determined. Component analysis together with 1H and 13C NMR spectroscopy was employed to elucidate the structure. Inter-residue correlations were determined by 1H, 1H NOESY and 1H, 13C heteronuclear multiple-bond correlation experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [Formula: see text] Cross-peaks of low intensity from alpha-linked mannopyranosyl residues were present in the 1H, 1H TOCSY NMR spectra and further analysis of these showed that they originate from the terminal part of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O176 O-antigen is similar to those from E. coli O17 and O77, thereby explaining the reported cross-reactivities between the strains, and identical to that of Salmonella cerro (O:6, 14, 18).  相似文献   

8.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

9.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from an enteroaggregative Escherichia coli (strain 105) has been elucidated, using primarily one-dimensional and two-dimensional NMR experiments. The sequence of residues was deduced with heteronuclear multiple-bond correlation and NOESY experiments. The structure of the repeating unit of the polysaccharide from the enteroaggregative E. coli is as follows:[sequence: see text] The structure of the O-antigen from enteroaggregative E. coli strain 105 was shown to be identical with that of E. coli O21 by sugar and methylation analyses as well as by 1H-NMR and 13C-NMR spectroscopy.  相似文献   

10.
Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strain's LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.  相似文献   

11.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides.  相似文献   

12.
The structures of the O-antigenic part of the lipopolysaccharides from Shigella dysenteriae type 3 and Escherichia coli O124 have been reinvestigated. (1)H and (13)C NMR spectroscopy in combination with selected 2D NMR techniques were used to determine the O-antigen pentasaccharide repeating units with the following structure: [see text]. From biosynthetic considerations this should also be the biological repeating unit. The structures of the repeating units also explain the previously observed cross-reactivity between the strains and to E. coli O164, which only differs in the terminal sugar residue that is lacking the (R)-1-carboxyethyl group.  相似文献   

13.
The O-antigen of the lipopolysaccharide from Escherichia coli O166 has been determined by component analysis together with 1D and 2D NMR spectroscopy techniques. The polysaccharide has pentasaccharide repeating units consisting of D-glucose (1), D-galactose (2) and N-acetyl-D-galactosamine (2) with the following structure: [STRUCTURE: SEE TEXT]. In the 1H NMR, spectrum resonances of low intensity were observed. Further analysis of these showed that they originate from the terminal part of the polysaccharide, thereby revealing that the repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.  相似文献   

14.
The O-polysaccharide from Vibrio cholerae O6 was isolated from the LPS by mild-acid hydrolysis and has been investigated by sugar and methylation analysis and NMR spectroscopy. The polysaccharide was also depolymerized with aqueous hydrofluoric acid to give the repeating unit and multiples thereof. The O-polysaccharide had the following tetrasaccharide repeating unit. Two O-acetyl groups are present, one of them making the GlcNAc residue fully substituted and the steric crowding considerable at the branching residue.  相似文献   

15.
A phosphorylated core-lipid A backbone oligosaccharide that carries a disaccharide remainder of the first O-antigen repeating unit was derived by strong alkaline degradation following mild hydrazinolysis of the lipopolysaccharide of Pseudomonas aeruginosa immunotype 4 (serogroup O-1). The structure of the oligosaccharide was determined using ESI MS and NMR spectroscopy and it was demonstrated that 2-acetamido-2,6-dideoxy-D-glucose is the first monosaccharide of the O-polysaccharide that is linked to the LPS core. These data define the structure of the biological repeating unit of the O-antigen.  相似文献   

16.
The following structure of the O-polysaccharide (O-antigen) of the lipopolysaccharide of Proteus mirabilis O-9 was determined by NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, ROESY, and 1H,(13)C HMQC experiments, along with chemical methods: [chemical structure: see text] where the degree of O-acetylation is approximately 70%. Immunochemical studies using rabbit polyclonal anti-Proteus mirabilis O-9 serum showed the importance of the O-acetyl groups in manifesting the serological specificity of the O-9 antigen. Anti-P. mirabilis O-9 cross-reacted with the lipopolysaccharides (LPS) of P. vulgaris O-25 and Proteus penneri 14, which could be accounted for by a structural similarity of their O-polysaccharides.  相似文献   

17.
The structure of a new O-polysaccharide from Escherichia coli O86:K62:B7 was determined using NMR and methylation analysis. The structure is as follows: [carbohydrate: see text]. Comparison with the previously published structure from E. coli O86:K2:H2 revealed that the O-polysaccharides from these two E. coli O86 serotypes share the same branched pentasaccharide repeating unit. However, they differ in the anomeric configuration of the linkage, the linkage position, and the identity of the residue through which polymerization occurs. The immunochemical activity of these two forms of LPS toward anti-B antibody was studied and compared. The results showed that LPS from E. coli O86:K2:H2 strain possesses higher blood group B reactivity. The immunoreactivity difference was explained by modeling of the O-repeating unit tetrasaccharide fragments. This finding provides a good system for the further study of O-polysaccharide biosynthesis especially the repeating unit polymerization mechanism.  相似文献   

18.
The structure of the O-antigen polysaccharide from Escherichia coli O159 has been determined using primarily NMR spectroscopy of the 13C-enriched polysaccharide. The sequence of the sugar residues could be determined by heteronuclear multiple bond connectivity NMR experiments. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [sequence: see text] Matrix assisted laser desorption ionization mass spectrometry was performed on intact lipopolysaccharide and from the resulting molecular mass the O-antigen part was estimated to contain approximately 23 repeating units. Cross-reactivity of this O-antigen to that of Shigella dysenteriae type 4 was confirmed using enzyme-linked immunoabsorbant assay.  相似文献   

19.
A strain of Citrobacter sedlakii showing serological cross-reaction with Escherichia coli O157 antisera was demonstrated to produce a lipopolysaccharide O-antigen having an identical structure with that of the E. coli O157 O-antigen. A strain of Citrobacter freunndii showing similar cross-reaction with E. coli O157 specific monoclonal antibody was shown to produce a lipopolysaccharide O-antigen composed of a trisaccharide repeating unit having the structure [ 2)-alpha-D Rhap-(1-3)-beta-D-Rhap-(1-4)-beta-D-Glcp-(1-]. This O-antigen differs from that of the E. coli O157 O-antigen and also lacks a component 2-substituted 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residue implicated as the common epitope in the lipopolysaccharide O-antigens of previously investigated bacterial species showing serological cross-reactivity with E. coli O157 antisera. The C freundii O-antigen presents an interesting example of structural mimicry within a bacterial polysaccharide antigen.  相似文献   

20.
The structure of the O-antigen polysaccharide from Escherichia coli O164 has been determined. Nuclear magnetic resonance spectroscopy together with component and methylation analyses of lipid free polysaccharide were the principal methods used. The sequence of the sugar residues could be determined by NOESY and heteronuclear multiple bond connectivity NMR experiments. It is concluded that the polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure: see text]. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was performed on intact lipopolysaccharide and from the resulting molecular mass, the O-antigen part was estimated to contain approximately 24 repeating units. The nature of the previously reported cross-reactivity of this O-antigen to those of Escherichia coli O124 and Shigella dysenteriae type 3 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号