首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The virulence spectrum of 23 monopycnidiospore isolates of Mycosphaerella graminicola was determined using wheat genotypes that carried different resistance genes (Stb1Stb8 and Stb15). Disease severity was measured as the percentage of necrotic leaf area. The isolates used in the experiments were of diverse origin: eight from Poland, seven from Germany, and eight from other countries around the world. Analysis of variance revealed significant differences in the virulence of the isolates. Using multiple regression and Cook’s D statistic, 26 significant cultivar × isolate interactions were detected. The Israeli isolate IPO86036 showed the widest spectrum of specific reactions. It expressed specific virulence on at least four cultivars and specific avirulence on at least three. The other isolates showed specific interactions with 1–6 different cultivars. Despite the limited number of isolates that were tested, we recommend that a number of resistant lines, namely cultivars Veranopolis (Stb2), Cs/Synthetic 7D (Stb5), Arina (Stb15, Stb6 and partial resistance), and Liwilla (unknown resistance factors), could be incorporated into central European wheat breeding programmes that are aimed at developing resistance against septoria tritici blotch. In contrast, resistance gene Stb7, which is carried by cultivar Estanzuela Federal, was ineffective against most of the isolates that were used. These results on the virulence spectrum of M. graminicola isolates provide valuable information for effective wheat breeding programmes to develop resistance to the pathogen.  相似文献   

2.
The proteolytic activity of the leaf extracellular space of wheat cultivars Pigüé and Isla Verde was estimated after inoculation of either detached leaves or plants with the fungus Septoria tritici. Pigüé is resistant, whereas Isla Verde is susceptible to the disease caused by S. tritici. Viable conidiospores of the fungus caused similar increases in both hydrogen peroxide production and chitinase activity of the cultivars studied. In contrast, they caused a decrease in the extracellular serine proteinase activity of Isla Verde and a significant increase in that of Pigüé. Independently of the cultivar from which it was extracted, the extracellular serine proteinase inhibited the germination of Septoria tritici conidiospores. These results suggest that the proteolytic activity of the leaf extracellular space can participate in the defence of wheat plants against Septoria tritici. Its regulation may be controlled by specific defence components of each cultivar.  相似文献   

3.
Septoria tritici blotch (STB) is one of the most important leaf diseases in wheat worldwide. Objectives of this study were (i) to compare inoculation and natural infection; (ii) to evaluate the level of adult‐plant resistance to STB using four isolates; and (iii) to analyse environmental stability of 24 winter wheat (Triticum aestivum L.) varieties in inoculated vs. non‐inoculated field trials across 3 years including nine environments (location × year combinations). Field trials were sown in split‐plot design inoculated with four aggressive isolates of S. tritici plus one non‐inoculated variant as main factor and 24 wheat varieties as subfactor. Septoria tritici blotch severity was visually scored as percentage flag leaves covered with lesions bearing pycnidia. Overall STB rating ranged from 8% (Solitär) to 63% (Rubens) flag leaf area affected, resulting in significant (P < 0.01) genotypic variance. Variance of genotype × environment interaction amounted to approximately 50% of the genotypic variance. Genotype × isolate interaction variance was significant too (P < 0.01) but of minor importance. Therefore, environmental stability of varieties should be a major breeding goal. The varieties Solitär, History and Florett were most resistant and stable as revealed by a regression approach, and the susceptible varieties were generally unstable. Hence, STB resistance and stability are correlated (P < 0.01), but there were some exceptions (Tuareg, Ambition). Promising candidates for an environmentally stable, effective adult‐plant resistance have been identified.  相似文献   

4.
Hydrogen peroxide (H(2)O(2)) is reported to inhibit biotrophic but benefit necrotrophic pathogens. Infection by necrotrophs can result in a massive accumulation of H(2)O(2) in hosts. Little is known of how pathogens with both growth types are affected (hemibiotrophs). The hemibiotroph, Septoria tritici, infecting wheat (Triticum aestivum) is inhibited by H(2)O(2) during the biotrophic phase, but a large H(2)O(2) accumulation occurs in the host during reproduction. Here, we infiltrated catalase, H(2)O(2) or water into wheat during the biotrophic or the necrotrophic phase of S. tritici and studied the effect of infection on host physiology to get an understanding of the survival strategy of the pathogen. H(2)O(2) removal by catalase at both early and late stages made plants more susceptible, whereas H(2)O(2) made them more resistant. H(2)O(2) is harmful to S. tritici throughout its life cycle, but it can be tolerated. The late accumulation of H(2)O(2) is unlikely to result from down-regulation of photosynthesis, but probably originates from damage to the peroxisomes during the general tissue collapse, which is accompanied by release of soluble sugars in a susceptible cultivar.  相似文献   

5.
An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple‐sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well‐adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade‐offs in plant breeding when numerous traits are important and to be cautious about the use of non‐adapted germplasm.  相似文献   

6.
Leaf blotch of wheat is a widespread and highly active disease that affects wheat production. In addition to the use of chemicals and proper cultivation methods, microbial antagonists are used to control plant pathogens. Trichoderma spp. stimulate a systemic induced response in plants. Therefore, the efficacy of Trichoderma spp. against wheat leaf blotch was evaluated under greenhouse conditions. The susceptible plants were sprayed with Septoria tritici conidiospores. In order to select an efficient method of pretreatment with Trichoderma spp., leaf spraying and seed coating with 14 isolates were tested in 2003 and 2004. The extent of leaf necrosis area and pycnidial coverage was estimated. Antagonism was assessed by the capacity of each Trichoderma spp. isolate to restrict the progress of leaf blotch, 21 days after inoculation. Of the two methods, seed coating was more efficacious against leaf blotch than leaf spraying. Amongst the 14 isolates tested, the isolate prepared from T. harzianum (Th5) produced the highest level of protection. None of the treatments caused changes in plant stem diameter or dry weight. Trichoderma spp. did not get into leaves while S. tritici was present, even in asymptomatic leaf extracts. In addition, the leaf apoplast antifungal proteolytic activity was measured in plants 7, 15, and 22 days after sowing. This antifungal action decreased in plants only inoculated with S. tritici, but increased in those grown from seeds coated with the T. harzianum (Th5) isolate. This increase conferred resistance to the susceptible wheat cultivar. The endogenous germin-like protease inhibitor coordinated the proteolytic action. These results suggest that T. harzianum stimulates a biochemical systemic induced response against leaf blotch.  相似文献   

7.

Background

Fusarium head blight (FHB) and Septoria tritici blotch (STB) severely impair wheat production. With the aim to further elucidate the genetic architecture underlying FHB and STB resistance, we phenotyped 1604 European wheat hybrids and their 135 parental lines for FHB and STB disease severities and determined genotypes at 17,372 single-nucleotide polymorphic loci.

Results

Cross-validated association mapping revealed the absence of large effect QTL for both traits. Genomic selection showed a three times higher prediction accuracy for FHB than STB disease severity for test sets largely unrelated to the training sets.

Conclusions

Our findings suggest that the genetic architecture is less complex and, hence, can be more properly tackled to perform accurate prediction for FHB than STB disease severity. Consequently, FHB disease severity is an interesting model trait to fine-tune genomic selection models exploiting beyond relatedness also knowledge of the genetic architecture.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1628-8) contains supplementary material, which is available to authorized users.  相似文献   

8.
The effects of medium, isolate, temperature, light and pH on the formation and germination of Septoria tritici secondary conidia were tested. Of the six media tested, the malt–yeast extract agar was the best and generated 1.82 × 109 conidia/plate. The ten isolates tested showed different ability of conidia production. Darkness significantly reduced conidial formation and enhanced the transition of intermediates. The conidial germination and germ tube growth was strongly inhibited at 30°C. The suitable pH for conidial budding in malt–yeast broth (MYB) was between 5 and 9. At pH 2, 10 and 11, almost no new conidia were formed. The number of conidia reached 1.27 × 108 conidia/ml after 7 days in MYB, significantly more than that in potato dextrose broth, wheat leaf extract and H2O.  相似文献   

9.
Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Ztritici and wheat, the wheat receptor-like kinase Stb6 and the Ztritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 haplotypes present in earlier Ztritici isolate collections, with up to c.18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of haplotypes allowing evasion of Stb6-mediated resistance in more recent Ztritici populations. Here we show, using targeted resequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world in 2013–2017. However, in contrast to the data from previous AvrStb6 population studies, we report a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Ztritici isolates. Moreover, a remarkably small number of haplotypes, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6-containing wheat, were found to predominate among modern Ztritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Ztritici to sexually reproduce on resistant hosts, AvrStb6 avirulence haplotypes tend to be eliminated in subsequent populations.  相似文献   

10.
Growth, leaf and cell morphology, and the chemical composition of the second leaf were studied in wheat (Triticum aestivumL., cv. Inna) plants grown on the medium containing nitrate, ammonium, or no nitrogen at all. Independent of the nitrogen nutrition, the second leaf of the 21-day-old plants matures and functions as a source of assimilates. Both ammonium nutrition and nitrogen deficiency decreased the fresh weight, area, and cell size in the leaf; however, the conditions of nitrogen nutrition did not affect the dry weight of the leaf. Nitrogen starvation increased and ammonium nutrition decreased the relative content of the cell walls in the dry weight. In the nitrate-fed plants, the leaf content of sucrose increased, and the contents of reduced nitrogen (Nred) and protein were lower than in the ammonium treatment. Reciprocally, the contents of reduced nitrogen and protein were highest in the ammonium treatment, the content of sucrose was lowest, with starch practically absent from the leaf. The nitrogen-starved leaf accumulated a large amount of starch, the Nredcontent was two times lower than in the ammonium-fed plants, and the protein content was similar to that in the nitrate-fed plants. Thus, leaf and cell morphology and the content of Nred, protein, and carbohydrate changes in different ways during wheat acclimation to the condition of nitrogen nutrition. By assessing the cell wall weight, the authors established that, depending on nitrogen nutrition, this cell compartment accepts a variable flow of carbon.  相似文献   

11.
In studies with a laboratory isolate of the fungal pathogen Stagonospora ( Septoria ) nodorum three different isolates of bacteria were closely associated with the fungus. Bacteria were also closely associated with fresh isolates of S. nodorum obtained from artificially and naturally infected field material. Although a range of bacteria was isolated, only one type of bacterium was found to be associated with each isolate of S. nodorum . In co-inoculation studies with pycnidiospores of the fungus on detached leaves, some of the bacterial isolates significantly increased the pathogenicity of the fungus, particularly Xanthomonas maltophilia , Sphingobacterium multivorum , Enterobacter agglomerans and Erwinia amylovora . Evidence is presented indicating that one of the ways that the 'helper bacteria' may assist in the establishment of infections is by the production of lipases that were not detected in germinating fungal spores.  相似文献   

12.
The activities of peroxidase isoforms and hydrogen peroxide content in leaf cuttings of wheat (Triticum aestivum L., cv. Diamant) resistant to Septoria blotch were studied during aging and following the infection with Septoria nodorum Berk. The differential activation of peroxidase isoforms was regulated by hydrogen peroxide level in the tissue. At early stages of fungus development in plant tissues, the decrease in the activities of soluble, membrane and ion-bound fractions of peroxidase elevated the level of hydrogen peroxide in infected tissues and rapidly activated peroxidase isoforms in infected tissues as compared to the aging ones even before disease symptoms appeared. The anionic peroxidases, which were first to respond to the pathogen, seem to stand for wheat resistance to fungal infections and the protection of leaf tissues from oxidative stress.  相似文献   

13.

Background

Septoria tritici blotch is an important leaf disease of European winter wheat. In our survey, we analyzed Septoria tritici blotch resistance in field trials with a large population of 1,055 elite hybrids and their 87 parental lines. Entries were fingerprinted with the 9 k SNP array. The accuracy of prediction of Septoria tritici blotch resistance achieved with different genome-wide mapping approaches was evaluated based on robust cross validation scenarios.

Results

Septoria tritici blotch disease severities were normally distributed, with genotypic variation being significantly (P < 0.01) larger than zero. The cross validation study revealed an absence of large effect QTL for additive and dominance effects. Application of genomic selection approaches particularly designed to tackle complex agronomic traits allowed to double the accuracy of prediction of Septoria tritici blotch resistance compared to calculation methods suited to detect QTL with large effects.

Conclusions

Our study revealed that Septoria tritici blotch resistance in European winter wheat is controlled by multiple loci with small effect size. This suggests that the currently achieved level of resistance in this collection is likely to be durable, as involvement of a high number of genes in a resistance trait reduces the risk of the resistance to be overcome by specific pathogen isolates or races.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-858) contains supplementary material, which is available to authorized users.  相似文献   

14.
Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound‐induced cytoplasmic bleeding “flushes” WBs into the septal opening. Alternatively, contraction of septum‐associated tethering proteins may pull WBs into the septal pore. Here, we investigate WB dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41 ± 1.5 nm). Live cell imaging of green fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane “balloon,” extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1‐enhanced green fluorescent protein (eGFP) appeared associated with the “ballooning” plasma membrane, indicating that cytoplasmic ZtHex1‐eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor carbonyl cyanide m‐chlorophenyl hydrazone induced WB translocation into the pores. Moreover, carbonyl cyanide m‐chlorophenyl hydrazone treatment recruited cytoplasmic ZtHex1‐eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP‐dependent process.  相似文献   

15.
The effects of alien cytoplasm substitution on the response of wheat to Septoria nodorum were studied, using alloplasmic series of two cultivars, Chris and Selkirk. In general, cytoplasmic substitution caused unidirectional effects on Septoria-response, alloplasmic lines of both cultivars expressing lower levels of partial resistance (in leaf and head tissue) but higher levels of yield tolerance than the corresponding euplasmic line. The reduced resistance in alloplasmics was closely associated with reduced incubation periods of Septoria infection in both leaf and head tissue. Cytoplasmic substitution resulted in increased yield tolerance to Septoria-infection in both the non-tolerant Selkirk and the relatively tolerant Chris. Unlike their effects on partial resistance, specific cytoplasms exerted similar effects on tolerance in the two parental cultivars, several cytoplasms of the D plasmatype being particularly effective in increasing Septoria-tolevance. The potential for the development of Septoria-toterant cultivars by the incorporation of alien cytoplasms is discussed, in view of the observed neutral effects of D plasmatype cytoplasms on other agronomic traits.  相似文献   

16.
Thirty-six isolates of Stagonospora avenae f. sp. triticea, S. nodorum and Septoria tritici recovered from asexual fruiting bodies - pycnidia and their spores were assessed for DNA polymorphism with the use of three molecular techniques: microsatellite-primed polymerase chain reaction (MP-PCR), primers correspond to dispersed repetitive elements (rep-PCR) and random amplified polymorphic DNA (RAPD-PCR). These polymerase chain reaction (PCR)-based techniques were simultaneously evaluated for their capacity to detect genetic variation at DNA level. The most polymorphic DNA profiles of monopycnidial and monopycnidiospore isolates were detected with diverse microsatellite motifs used for PCR priming. The lowest similarity values 0.86, 0.76 and 0.84 were identified among monopycnidiospore isolates derived from the same pycnidium of S. avenae f. sp. triticea, S. nodorum and S. tritici, respectively. The above, rather low similarities, found for isolates recovered from single pycnidia, supported a hypothesis that heterokaryosis resulted from high mutation rate of microsatellites and transposons activity. This would have fundamental consequences for the genetic status of asexual populations of Stagonospora spp. and S. tritici. The data produced by this study indicate that more attention should be paid to asexual reproduction as a possible source of genetic variability among populations of the pathogens.  相似文献   

17.
18.
氮磷亏缺对小麦TaIPS基因表达的影响   总被引:1,自引:0,他引:1  
为了解小麦高效利用土壤磷的分子机理和实现对小麦缺磷的分子诊断,以普通小麦(Triticum aestivum L.)小偃54为材料,克隆了5个受缺磷诱导的IPS基因,同源比较结果显示,小麦IPS基因属于典型的受缺磷条件特异诱导的TPSI1/MT4小基因家族.对小麦根系和地上部的半定量RT-PCR研究结果表明,与全营养处理对照相比,3叶期小麦幼苗经过缺氮、缺磷和氮磷同时缺乏处理8d后,缺磷显著增加了根系中3个TaIPS1(TaIPS1.1、TaIPS1.2和TaIPS1.3)基因和地上部TaIPS1.1基因的表达,中度上调了根系中2个TaIPS2基因(TaIPS2.1和TaIPS2.2)的表达,轻度上调了地上部TaIPS1.2和2个TaIPS2基因的表达.通过比较5个基因在根系和地上部对缺磷的响应,认为TaIPS1.1是一个较理想的用于诊断小麦植株磷素丰缺的基因.缺氮不仅降低了3个TaIPS1基因在根系中的表达,并抑制了IPS基因对缺磷的响应.这一研究结果预示了TaIPS基因对低磷胁迫的响应依赖于植株体内的氮素营养状况.  相似文献   

19.
The activity of enzymes participating in the systems of antioxidant protection was assayed in the second leaf and roots of 21-day-old wheat seedlings (Triticum aestivum L.) grown in a medium with nitrate (NO 3 treatment), ammonium (NH+ 4 treatment), or without nitrogen added (N-deficiency treatment). The activities of superoxide dismutase (SOD), peroxidase, ascorbate peroxidase, glutathione reductase, and catalase in the leaves and roots of the NH+ 4 plants was significantly higher than in the plants grown in the nitrate medium. The activity of SOD decreased and ascorbate peroxidase markedly increased in leaves, whereas the activity of ascorbate peroxidase increased in the roots of N-deficient plants, as compared to the plants grown in nitrate and ammonium. Low-temperature incubation (5°, 12 h) differentially affected the antioxidant activity of the studied plants. Whereas leaf enzyme activities did not change in the NH+ 4 plants, the activities of SOD, peroxidase, ascorbate peroxidase, and catalase markedly increased in the NO 3 plants. In leaves of the N-deficient plant, the activity of SOD decreased; however, the activity of other enzymes increased. In response to temperature decrease, catalase activity increased in the roots of NO 3 and NH+ 4-plants, whereas in the N-deficient plants, the activity of peroxidase increased. Thus, in wheat, both nitrogen form and nitrogen deficiency changed the time-course of antioxidant enzyme activities in response to low temperature.  相似文献   

20.
以强筋小麦品种'济麦20'为材料,在防雨池栽培条件下研究了施氮量和花后土壤含水量对强筋小麦籽粒淀粉合成及其品质的影响,以明确强筋小麦获得高产优质的花后适宜土壤含水量及施氮量.结果表明:在同一施氮量下,适宜的花后土壤含水量(60%~70%)籽粒游离态淀粉合成酶(SSS)和束缚态淀粉合成酶(GBSS)活性在籽粒发育过程中一直最高,有利于直链淀粉、支链淀粉的积累和支链淀粉/直链淀粉比的提高,提高峰值粘度、低谷粘度、最终粘度和衰减值;花后土壤含水量过高(80%~90%)或过低(40%~50%)均导致籽粒SSS和GBSS活性降低,从而使直链淀粉、支链淀粉的积累量降低,减小支链淀粉/直链淀粉比,使峰值粘度、低谷粘度、最终粘度降低.(2)在同一土壤含水量下,增施氮肥不利于灌浆前期SSS和GBSS活性和直链淀粉、支链淀粉积累量的提高,并且随着土壤含水量增加增施氮肥该趋势加重;适量增施氮肥能提高支链淀粉/直链淀粉比和峰值粘度、低谷粘度、最终粘度,过多或过少施氮则降低支/直比和峰值粘度、低谷粘度、最终粘度.研究认为,在本试验条件下,适量增施氮肥(纯氮225 kg/hm2)或适宜的花后土壤含水量(60%~70%)可促进强筋小麦籽粒淀粉的合成,有效改善其淀粉品质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号