共查询到20条相似文献,搜索用时 15 毫秒
1.
Biogenesis of Mitochondria in Imbibed Peanut Cotyledons : II. DEVELOPMENT OF LIGHT AND HEAVY MITOCHONDRIA 总被引:1,自引:2,他引:1
下载免费PDF全文

There are two types of mitochondria present in imbibed peanut cotyledons: a light type (density 1.182 grams per cubic centimeter) and a heavy type (density 1.205 grams per cubic centimeter). The membrane fractions from these two types can be distinguished using sucrose density gradient analysis, and differences in membrane density between the light and heavy types are reflected in differences in their protein N and phospholipid P composition. With increasing time after imbibition, there is a substantial increase in the amount and activity of the light type of mitochondria due to their de novo synthesis. The membrane density of the light mitochondrial fraction declines over 5 days after the start of imbibition as the phospholipid P to protein N ratio increases. The heavy mitochondrial fraction declines during the first 3 days after the start of imbibition, and then it remains at a low, but constant, level thereafter. Even during the decline, however, there is synthesis of proteins comparable to that into light mitochondria. The mitochondrial biogenesis that has been observed in peanut cotyledons is of the light type, the function and physiological importance of the minor heavy type is not known. 相似文献
2.
Biogenesis of Mitochondria in Germinating Peanut Cotyledons II. Changes in Cytochromes and Mitochondrial DNA
下载免费PDF全文

Biogenesis of mitochondria occurs in the germinating cotyledons of peanuts. This process was demonstrated by measuring both constitutive and enzymatic properties of mitochondria as a function of germination time. Direct counting by phase contrast microscopy of sucrose density gradient preparations showed that the number of mitochondria increased markedly during germination. DNA with a buoyant density distinct from the major cellular DNA was associated with these mitochondrial preparations. During germination the amount of this DNA in mitochondrial pellets increased. This increase closely paralleled the increase in number of mitochondria.
Succinoxidase and succinic dehydrogenase increased during germination. Both activities were confined to the mitochondrial fraction. The rate of increase of succinoxidase activity was significantly greater than the rate of increase of succinic dehydrogenase and both increased at least initially at a greater rate than the amount of mitochondrial DNA or numbers of mitochondria.
The amounts of cytochromes present in mitochondrial preparations were measured spectrophotometrically. All of the cytochromes increased in amount during germination. The rate of increase of cytochrome a — a3 very close to the rate of increase in succinoxidase activity.
相似文献3.
4.
Influence of the Embryonic Axis on Protein Hydrolysis in Cotyledons of Cucurbita maxima 总被引:1,自引:0,他引:1
Four-day time course studies of the hydrolysis of cotyledonal storage protein were conducted on intact seeds, seed cotyledons detached from their embryonic axes and on detached cotyledon pairs germinated in the presence of three excised embryonic axes of Cucurbita maxima Duch., cv. Chicago Worted Hubbard. Detached cotyledons germinated alone showed little hydrolysis of the storage protein. However, the amount of protein hydrolysis of the detached cotyledon pairs germinated in the presence of three excised embryonic axes was comparable to the amount hydrolyzed in the cotyledons of intact germinating seeds. Visual growth differences among these treatments were also evident. The size and yellow color intensity of the fourth day treatments were shown to increase in the following order: detached cotyledon pairs alone, intact seedlings, detached cotyledon pairs in the presence of three excised axes. The growth of the hypocotyl and radical was also modified by removal of the cotyledons. These findings suggest that storage protein degradation and cotyledonal growth are controled by the axis. They also indicate that the cotyledons have some influence on the growth of the axes. Time-course studies were made on the hydrolysis of storage protein in the cotyledons of squash and on the distribution of the hydrolytic products during the germination of light- and dark-grown plants. The storage protein was not hydrolyzed during the first 24 hours. It was hydrolyzed at a uniform rate from 1 to 5 days and at a slightly decreased rate from 5 to 7 days. Most of the hydrolytic products were transported to the axial tissue. Proteinase activity in the cotyledons rapidly increased during germination to a maximum level at 2 to 3 days. This was followed by a decline to about the initial value after 7 days. 相似文献
5.
6.
7.
8.
Development of Mitochondrial Activity in Pea Cotyledons Following Imbibition; Influence of the Embryonic Axis 总被引:1,自引:0,他引:1
The development of mitochondria in cotyledons during the initialstages following imbibition and the subsequent degenerationwere faster when the embryonic axis was attached. This was moreclearly demonstrated when mitochondrial activity was determinedusing malate or -oxoglutarate as substrate rather than NADHor succinate. Cycloheximide did not inhibit the initial developmentof mitochondria in attached cotyledons, although it inhibitedthe incorporation of 14C-amino acid into protein. Abscisic acidinhibited almost completely the initial increase in mitochondrialactivities of attached cotyledons. The activities of severalenzymes in mitochondrial fractions were almost the same in attachedand detached cotyledons during 4 d after, imbibition. The degenerationof mitochondria was not accompanied by the loss of enzymes.It was inferred that the initial development and the subsequentdegeneration of mitochondria in cotyledons during 4 d afterimbibition was brought about by the structural improvement anddisorganization of mitochondria, respectively. The initial differencesin the development of mitochondrial activities between attachedand detached cotyledons were suggested to be attributable todifferences in the development of the activities of electrontransfer pathway from endogenous NADH to ubiquinone. 相似文献
9.
The protein metabolism of cotyledons attached to the embryonic axis has been compared with that in cotyledons removed from the axis at the initiation of a 6-day imbibition. Total protein declined in the attached but not in the detached cotyledons. Concurrent with the decline in protein level in the intact cotyledons there was an increased capacity to incorporate exogenously supplied leucine into protein. In contrast, detached cotyledons showed a restricted capacity for protein synthesis. It was demonstrated that ribosomal preparations from cotyledons of intact seedlings contained an increasing proportion of polyribosomes as germination progressed and such ribosomes were active in in vitro amino acid incorporation. Ribosomal preparations from detached cotyledons contained few polyribosomes and had a restricted capacity to incorporate amino acids in vitro. The in vitro incorporation of phenylalanine was stimulated by polyuridylic acid with the stimulation being greatest in ribosomal preparations from detached cotyledons. The results suggest that an axis component may regulate the availability of messenger RNA in the cotyledons during germination. 相似文献
10.
11.
12.
Polyethylene glycol (PEG) mediated transfection of Lactobacillus casei ATCC 27092 protoplasts by phage PL-1 DNA was done. The protoplasts were obtained by treatment with purified PL-1 phage N-acetylmuramidase in the presence of citrate. Optimum conditions for transfection were 50% PEG 4,000, 15 µg protamine sulfate/ml, 0.15 m sucrose, and 10 m m MgSO4 in MR medium (pH 6.0). The extent of transfection was proportional to the amounts of DNA added, and the greatest efficiency of transfection after a 10-min incubation was about 3.3 × 105 PFU/µg DNA. The eclipse period of growth of progeny phages in the transfectants was 3 hr and the average burst size was 200. 相似文献
13.
Tricarboxylic Acid Cycle Activity in Mitochondria from Soybean Nodules and Cotyledons 总被引:2,自引:0,他引:2
Infected cells of soybean (Glycine max) nodules require NADH,ATP, and 2-oxoglutarate for ammonia assimilation. The role ofmitochondria in nodule metabolism was investigated by determiningtheir respiratory properties and comparing them with cotyledonmitochondria. Nodule mitochondria oxidized malate at a ratetwice that of any other NAD-linked substrate although theirmalic enzyme activity was very low, accounting for only 12%of malate oxidation at pH 6.4 compared to 56% for cotyledonmitochondria. The reduction of NAD+ in mitochondria of noduleson adding malate (determined by fluorescence) was rapid andreached a stable level, whereas in cotyledon mitochondria theNADH level declined rapidly as oxaloacetate accumulated. Anoxaloacetate scavenging system in the mitochondrial reactionmedium increased malate oxidation by cotyledon mitochondria4-fold, but increased that of nodule mitochondria by less than50%. This demonstrates that the efflux of oxaloacetate by theoxaloacetate carrier is highly regulated by the extra-mitochondrialoxaloacetate concentration in cotyledon mitochondria comparedto nodule mitochondria. The activity of TCA cycle enzymes, exceptmalate and succinate dehydrogenases, was low in nodule mitochondria.Their oxaloacetate export during malate oxidation was rapid.The aspartate amino transferase activity associated with nodulemitochondria was sufficient to account for significant formationof 2-oxoglutarate from oxaloacetate and glutamate. These resultssuggest that nodule mitochondria operate a truncated form ofthe TCA cycle and primarily oxidize malate to provide oxaloacetateand ATP for NH3 assimilation. Key words: Glycine max (L.), nitrogen fixation, gluconeogenesis, respiration 相似文献
14.
Endopeptidase (azocaseolytic enzyme) and carboxypeptidase activitiesin cotyledons of germinating Vigna mungo seeds increased until3 days after the onset of imbibition and decreased thereafter.In detached and incubated cotyledons, the endopeptidase activityincreased only a little while the carboxypeptidase activitycontinued increasing even after 3 days of incubation. The activitiesof leucine-aminopeptidase and alanine-aminopeptidase, exceptfor that of one leucine-aminopeptidase isoenzyme relativelyabundantly present in unimbibed dry cotyledons, increased slightlyon the first day and declined during germination. In detachedcotyledons, the activities maintained their initial levels throughoutthe incubation period. When cotyledons were detached from germinatingseedlings on days 2 and 4 then incubated, the endopeptidaseactivity started to decrease just after removal of the axisbut the carboxypeptidase activity increased more markedly thanwhen the axis remained attached. Exogenously supplied GA3, kinetin,IAA, or their combinations, showed no significant effect onthe developmental patterns of the endopeptidase and carboxypeptidaseactivities in cotyledons. These results are discussed in relationto the role of the axis in controlling peptidase formation incotyledons of germinating V. mungo seeds. (Received November 18, 1983; Accepted February 28, 1984) 相似文献
15.
16.
Emmanouela Kallergi Ester Kalef-Ezra Katerina Karagouni-Dalakoura Kostas Tokatlidis 《Neurochemical research》2014,39(3):546-555
Mitochondria biogenesis is a fundamental process for the organization and normal function of all cells. Since the majority of mitochondrial proteins are synthesized in the cytosol, protein import is the major mechanism for mitochondria biogenesis. We describe the different pathways that ensure correct targeting and intra mitochondrial sorting of mitochondrial proteins. The import process of several proteins of the mitochondrial intermembrane space relies on the Mitochondrial Import and Assembly 40 and Essential for respiration and vegetative growth 1 (Erv1) proteins that together constitute the oxidative folding machinery of the mitochondrial intermembrane space. Recent work has implicated the FAD-oxidase protein Erv1 (ad its human homolog Augmenter of Liver Regeneration) as an anti-apoptotic factor in mammalian cells (including neuronal cells) that undergo Reactive Oxygen Species-triggered apoptosis. The different roles of this protein as a key factor in mitochondria biogenesis, iron-sulfur cluster biogenesis and in neuronal protection against apoptosis are discussed. 相似文献
17.
Development of Mitochondrial Activities in Pea Cotyledons during and following Germination of the Axis 总被引:2,自引:2,他引:2
下载免费PDF全文

Development of mitochondrial activities in pea cotyledons during early times after the start of imbibition occurred in two phases. In the first phase (0 to 8 hours after the start of imbibition), succinate or NADH oxidation increased rapidly, while malate or α-ketoglutarate oxidation remained low. The latter activities developed only 8 to 12 hours after the start of imbibition (the second phase). Development in the first phase was induced by water uptake, but some development occurred even when the cotyledons were fully imbibed. The presence of the axis was required for the second phase of the development. It is suggested that mitochondrial development in the second phase is brought about by activation of the electron transfer path at a site between the oxidation of endogenous NADH and the reduction of ubiquinone. 相似文献
18.
Chloroplast Biogenesis: XX. Accumulation of Porphyrin and Phorbin Pigments in Cucumber Cotyledons during Photoperiodic Greening
下载免费PDF全文

A study of greening in cucumber (Cucumis sativus L.) cotyledons grown under a light (14-hour) dark (10-hour) photoperiodic regime was undertaken. The pools of protoporphyrin IX, Mg-protoporphyrin IX monoester, protochlorophyllide, and protochlorophyllide ester were determined spectrofluorometrically. Chlorophyll a and b were monitored spectrophotometrically. Pigments were extracted during the 3rd hour of each light period and at the end of each subsequent dark period during the first seven growth cycles. Protoporphyrin IX did not accumulate during greening. Mg-protoporphyrin IX monoester and longer wavelength metalloporphyrins accumulated during the light cycles and disappeared in the dark. Their disappearance was accompanied by the accumulation of protochlorophyll. Higher levels of protochlorophyll were observed in the dark than in the light, and the greatest accumulation occurred during the third and fourth dark cycles. Protochlorophyllide was present in 3- to 10-fold excess over protochlorophyllide ester; it was detectable during the period of net chlorophyll accumulation as well as afterward. In contrast, protochlorophyllide ester was observable only during the first four photoperiodic cycles, suggesting that it was a metabolic intermediate only during the early stages of chlorophyll accumulation. Between the third and fourth growth cycles, a rapid increase in area and fresh weight per cotyledon began. This was accompanied by a 250-fold increase in the level of chlorophyll a + b during the three subsequent growth cycles. No lag period in the accumulation of chlorophyll b was observed, and at all stages of greening, the chlorophyll a/b ratio was approximately 3. 相似文献
19.
花生(Arachis hypogaea L.)汕油71果针入土20d(20 DAP)的种子剥去种皮后,10%的胚可以萌发,至40 DAP发芽率达98%。不同发育时期的花生胚萌发 10d后子叶盐溶蛋白质和花生球蛋白降解表明,20和32 DAP胚萌发后,子叶中这些蛋白质只有部分降解。随着胚成熟度增加,子叶中降解这些蛋白质的能力不断提高。20~40 DAP胚萌发4d时,子叶的BAPAase和GHE活性较低。50~80DAP胚萌发 4d,子叶中上述两种酶均显示较高的活性。 相似文献
20.
The crude mitochondrial fraction from pea cotyledons can, from days 1 to 7 of germination, be separated into three fractions by sucrose density gradient centrifugation. When seeds were grown in water (control) or cycloheximide (120 micrograms per milliliter of medium) for 4 days, the originally different populations of mitochondria acquired a uniform density and separated together in band 1 (density, 1.205 grams per milliliter). The oxidative and phosphorylative activities of mitochondria obtained from 4-day-old control and 4-day-old cycloheximide-treated pea seeds were the same. However, mitochondria from pea seeds that were grown in d-threo-chloramphenicol (1.5 milligrams per milliliter of medium) or erythromycin (0.5 milligram per milliliter of medium) for 4 days separate into three bands (fully developed mitochondria in the top band [band 1] and partially developed mitochondria in the lower two bands [bands 2 and 3]). Separation patterns and oxidative and phosphorylative activities were the same for mitochondria separated from 4-day-old cotyledons treated with d-threo-chloramphenicol or erythromycin and from 1-day-old cotyledons grown in water. This indicated that these inhibitors prevented the partially developed mitochondria originally in bands 2 and 3 from developing further. In contrast, cycloheximide did not seem to interfere with the mitochondrial structural development. These results along with those obtained from the experiments on the effects of d-threo-chloramphenicol, erthromycin, and cycloheximide on 14C-leucine incorporation into mitochondrial membrane proteins suggest that the increase in mitochondrial activity during germination may be a result of structural development (membrane synthesis) in pre-existing mitochondria. 相似文献