首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.  相似文献   

2.
The classification of taxa within Collembola (Springtails, Hexapoda) has been controversial. In this study, we combined complete 18S rRNA gene with partial 28S rRNA gene (D7-D10) sequences to investigate the phylogeny of Collembola. About 2500 aligned sites of thirty species representing 29 genera from14 families of Collembola were analyzed, including one species of Neelipleona from which no sequence has been reported previously.The phylogenetic trees were obtained by different methods (maximum parsimony, maximum likelihood, and Bayesian analysis). Our results supported the monophyly of two of the four taxonomic groups of Collembola summarized by Deharveng [Deharveng, L., 2004. Recent advances in Collembola systematics. Pedobiologia 48, 415–433.], namely of Poduromorpha and of Symphypleona. Within Poduromorpha, Neanuridae was monophyletic with high support, but Hypogastruridae was not. Entomobryomorpha was paraphyletic, as the Tomoceroidea (Tomoceridae and Oncopoduridae) was found to be apart from the other entomobryomorphs. In the latter Isotomoidea and Entomobryoidea joined into a group with moderate support. Within Symphypleona, the phylogenetic relationship [(Sminthuridae + Bourletiellidae) + Sminthurididae] was consistent with traditional morphological studies. Neelipleona grouped with Symphypleona in all trees, with moderate support in the ML and Bayesian analyses.  相似文献   

3.
Phylogenetic relationships within Collembola were determined through the cladistic analysis of 131 morphological characters and 67 exemplar taxa representing the major families of the group, with special emphasis on Poduromorpha. The results show that the order Poduromorpha is monophyletic and the sister group to the remaining Collembola, with Entomobryomorpha monophyletic and the sister group to the clade Neelipleona + Symphypleona. In Entomobryomorpha, Actaletidae is the sister group of the remaining families. In Poduromorpha, Tullbergiinae is monophyletic as well as Onychiurinae and the group Tetrodontophorinae + Onychiurinae which is the sister group of the remaining Poduromorpha; Tetrodontophorinae is paraphyletic; Onychiuridae is polyphyletic; Isotogastruridae is not an intermediate between Poduromorpha and Entomobryomorpha, it is the sister group of Tullbergiinae; Odontellidae is monophyletic and the sister group to the clade Neanuridae + Brachystomellidae; in Neanuridae, Frieseinae and the group Pseudachorutinae + Morulinae + Neanurinae are monophyletic; Morulinae is the sister group of Neanurinae; Pseudachorutinae is paraphyletic; Hypogastruridae is polyphyletic; Podura aquatica (Poduridae) is not 'primitive', it clusters with the genera Xenylla and Paraxenylla in Hypogastruridae. On the basis of these relationships and the position of the aquatic species, the most parsimonious hypothesis is a terrestrial edaphic origin for the springtails.  相似文献   

4.
Spehn  Eva M.  Joshi  Jasmin  Schmid  Bernhard  Alphei  Jörn  Körner  Christian 《Plant and Soil》2000,224(2):217-230
The loss of plant species from terrestrial ecosystems may cause changes in soil decomposer communities and in decomposition of organic material with potential further consequences for other ecosystem processes. This was tested in experimental communities of 1, 2, 4, 8, 32 plant species and of 1, 2 or 3 functional groups (grasses, legumes and non-leguminous forbs). As plant species richness was reduced from the highest species richness to monocultures, mean aboveground plant biomass decreased by 150%, but microbial biomass (measured by substrate induced respiration) decreased by only 15% (P = 0.05). Irrespective of plant species richness, the absence of legumes (across diversity levels) caused microbial biomass to decrease by 15% (P = 0.02). No effect of plant species richness or composition was detected on the microbial metabolic quotient (qCO2) and no plant species richness effect was found on feeding activity of the mesofauna (assessed with a bait-lamina-test). Decomposition of cellulose and birchwood sticks was also not affected by plant species richness, but when legumes were absent, cellulose samples were decomposed more slowly (16% in 1996, 27% in 1997, P = 0.006). A significant decrease in earthworm population density of 63% and in total earthworm biomass by 84% was the single most prominent response to the reduction of plant species richness, largely due to a 50% reduction in biomass of the dominant `anecic' earthworms. Voles (Arvicola terrestris L.) also had a clear preference for high-diversity plots. Soil moisture during the growing season was unaffected by plant species richness or the number of functional groups present. In contrast, soil temperature was 2 K higher in monocultures compared with the most diverse mixtures on a bright day at peak season. We conclude that the lower abundance and activity of decomposers with reduced plant species richness was related to altered substrate quantity, a signal which is not reflected in rates of decomposition of standard test material. The presence of nitrogen fixers seemed to be the most important component of the plant diversity manipulation for soil heterotrophs. The reduction in plant biomass due to the simulated loss of plant species had more pronounced effects on voles and earthworms than on microbes, suggesting that higher trophic levels are more strongly affected than lower trophic levels.  相似文献   

5.
Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups—legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity–productivity relationship.  相似文献   

6.
Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number – namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification, whereas changes in microbial abundance play a major role for non-facultative activities such as nitrification.  相似文献   

7.
Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction with plant species and functional group richness, and their effects on belowground plant competition. In the framework of the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four). We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity (+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure of plant communities by beneficially affecting certain plant functional groups.  相似文献   

8.
We studied the effects of plant diversity on abundance of invertebrate herbivores, parasitoids and predators in two grassland communities (one in Switzerland and one in Sweden) in which plant species richness and functional diversity have been experimentally manipulated. Among herbivores, the abundance of only the most sessile and specialised groups (leafhoppers and wingless aphids) was affected by plant diversity. At both sites, numbers of leafhoppers in sweep net samples showed a linear, negative relationship with plant species number whereas numbers of wingless aphids in suction samples increased with the number of plant functional groups (grasses, legumes, and non-legume forbs) present in the plot. Activity of carabid beetles and spiders (as revealed by pitfall catches) and the total number of predators in pitfalls at the Swiss site decreased linearly with increases in the number of plant species and plant functional groups. Abundance of more specialised enemies, hymenopteran parasitoids, was not affected by the manipulations of plant diversity. Path analysis and analysis of covariance indicated that plant diversity effects on invertebrate abundance were mostly indirect and mediated by changes in plant biomass and cover. At both sites, plant species composition (i.e. the identity of plant species in a mixture) affected numbers of most of the examined groups of invertebrates and was, therefore, a more important determinant of invertebrate abundance in grasslands than plant species richness per se or the number of plant functional groups. The presence of legumes in a mixture was especially important and led to higher numbers of most invertebrate groups. The similarity of invertebrate responses to plant diversity at the two study sites indicates that general patterns in abundance of different trophic groups can be detected across plant diversity gradients under different environmental conditions.  相似文献   

9.
Chauvat M  Zaitsev AS  Wolters V 《Oecologia》2003,137(2):269-276
Dynamic approaches to forest ecosystems are surprisingly rare. Here we report about successional changes in collembolan community structure and microbial performances during forest rotation. The study was carried out in a chronosequence of four spruce forest stands (5-, 25-, 45-, and 95 years old; Tharandter forest, Germany). CO2 release significantly increased after clear-cutting and the amount of C stored in the organic layer subsequently declined. The early phase of forest rotation was characterized by a very active decomposer microflora, stimulation of both fungi and bacteria as well as by a high abundance of surface-oriented Collembola. In addition, collembolan species turnover was accelerated. While the biomass of fungi further increased at intermediate stages of forest rotation, the metabolic activity of the microflora was low, the functional diversity of bacteria declined and the collembolan community became impoverished. Euedaphic species dominated during this stage of forest development. These changes can be explained by both reduction in microhabitat diversity and depletion of food sources associated with an accumulation of recalcitrant soil organic matter. Results of the General Regression Model procedure indicate a shift from specific associations between collembolan functional groups and microbiota at the early stage of forest rotation to a more diffuse pattern at intermediate stages. Though the hypothesis that Collembola are relatively responsive to changes in environmental conditions is confirmed, consistently high community similarity suggests a remarkable persistence of some components of microarthropod assemblages. Our study provides evidence for substantial ecosystem-level implications of changes in the soil food web during forest rotation. Moreover, correlations between bacterial parameters and Collembola point to the overarching impact of differences in the composition of the microbial community on microarthropods.  相似文献   

10.
Effects of plant community diversity on ecosystem processes have recently received major attention. In contrast, effects of species richness and functional richness on individual plant performance, and their magnitude relative to effects of community composition, have been largely neglected. Therefore, we examined height, aboveground biomass, and inflorescence production of individual plants of all species present in 82 large plots of the Jena Experiment, a large grassland biodiversity experiment in Germany. These plots differed in species richness (1–60), functional richness (1–4), and community composition. On average, in more species-rich communities, plant individuals grew taller, but weighed less, were less likely to flower, and had fewer inflorescences. In plots containing legumes, non-legumes were higher and weighed more than in plots without legumes. In plots containing grasses, non-grasses were less likely to flower than in plots without grasses. This indicates that legumes positively and grasses negatively affected the performance of other species. Species richness and functional richness effects differed systematically between functional groups. The magnitude of the increase in plant height with increasing species richness was greatest in grasses and was progressively smaller in legumes, small herbs, and tall herbs. Individual aboveground biomass responses to increasing species richness also differed among functional groups and were positive for legumes, less pronouncedly positive for grasses, negative for small herbs, and more pronouncedly negative for tall herbs. Moreover, these effects of species richness differed strongly between species within these functional groups. We conclude that individual plant performance largely depends on the diversity of the surrounding community, and that the direction and magnitude of the effects of species richness and functional richness differs largely between species. Our study suggests that diversity of the surrounding community needs to be taken into account when interpreting drivers of the performance of individual plants.  相似文献   

11.
Abstract The collembolan faunas of 30 bauxite mines rehabilitated by a range of different methods between 1966 and 1977, and three forest plots were surveyed in the spring and summer of 1978–79 with the aim of studying the restoration of decomposer activity in degraded areas. The rehabilitation methods included seeding and planting with a variety of native or exotic plant species. Physical and botanical parameters of the plots were also measured. Sixty species of Collembola were collected from the rehabilitated areas; nine of the 28 species found in the forest plots were not present on the mined sites. Principal components analysis suggested that the species richness of the collembolan community in rehabilitated areas is positively correlated with plot age. A parametric correlation analysis using a number of collembolan community characteristics revealed that, among other factors, the development of a species rich collembolan fauna is positively correlated with plant species richness and diversity, and also with percentage plant cover. These results provide directions for improving rehabilitation practices.  相似文献   

12.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

13.
Stable provisioning of ecosystem functions and services is crucial for human well‐being in a changing world. Two essential ecological components driving vital ecosystem functions in terrestrial ecosystems are plant diversity and soil microorganisms. In this study, we tracked soil microbial basal respiration and biomass over a time period of 12 years in a grassland biodiversity experiment (the Jena Experiment) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability of soil microbial properties (basal respiration and biomass) in bulk‐soil. Spatial and temporal stability were calculated as the inverse coefficient of variation (CV?1) of soil microbial respiration and biomass measured from soil samples taken over space and time, respectively. We found that 1) plant species richness consistently increased soil microbial properties after a time lag of four years since the establishment of the experimental plots, 2) plant species richness had minor effects on the spatial stability of soil microbial properties, whereas 3) the functional composition of plant communities significantly affected spatial stability of soil microbial properties, with legumes and tall herbs reducing both the spatial stability of microbial respiration and biomass, while grasses increased the latter, and 4) the effect of plant diversity on temporal stability of soil microbial properties turned from being negative to neutral, suggesting that the recovery of soil microbial communities from former arable land‐use takes more than a decade. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially‐driven ecosystem processes, such as decomposition and element cycling, in temperate semi‐natural grassland.  相似文献   

14.
Aims Diversity–productivity relationships among herbaceous species have mostly been studied in grasslands, while less is known about diversity effects among weedy species with a short life cycle.Methods We studied diversity–productivity relationships, shoot density, size and allometry in experimental communities of different species richness (one, three, six, and nine species), functional group number (one to three functional groups: grasses, small herbs and tall herbs) and functional group evenness (even and uneven number of species per functional group) based on a pool of nine arable weed species with a short life cycle in a 2-year experiment.Important findings Higher species richness increased above- and belowground biomass production in both years of the experiment. Additive partitioning showed that positive selection effects increased with increasing species richness and functional group number, while positive complementarity effects were greater when tall herbs were present. Relative yield totals were larger than 1 across all species richness levels but did not increase with species richness, which is consistent with constant positive complementarity effects. Community biomass production and diversity effects increased in the second year of the experiment, when communities achieved greater shoot densities and average shoot sizes. At the community level, varying productivity was mainly attributable to variation in mean shoot sizes. Tall herbs reached greater observed/expected relative yields (=overyielding) due to increased shoot sizes, underyielding of small herbs was mainly attributable to decreased shoot sizes, while grasses partly compensated for reduced shoot sizes by increasing densities. Shifts in community-level density–size relationships and changes in shoot allometry in favour of greater height growth indicated that a greater biomass at a given density was due to increased dimensions of occupied canopy space. We conclude that diversity effects are also possible among short-lived arable weed species, but selection effects through sizes differences among species are key for positive species richness–productivity relationships.  相似文献   

15.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

16.
Biodiversity experiments typically vary only species richness and composition, yet the generality of their results relies on consistent effects of these factors even under varying starting conditions of density and evenness. We tested this assumption in a factorial species richness x density x evenness experiment using a pool of 60 common grassland species divided into four functional groups (grasses, legumes, tall herbs and short herbs). Richness varied from 1, 2, 4, 8 to 16 species, total planting density was 1,000 or 2,000 seeds/m2, and species were sown in even or uneven proportions, where one functional group was made dominant. Aboveground plant biomass increased linearly with the logarithm of species richness in all density and evenness treatments during all three years of the experiment. This was due to a convergence of realized density and evenness within species richness levels, although functional groups which were initially made dominant retained their dominance. Between species richness levels, realized density increased, and realized evenness decreased with species richness. Thus, more individuals could coexist if they belonged to different species. Within species richness levels, higher biomass values were correlated with lower density, suggesting an underlying thinning process. However, communities with low realized evenness also had low biomass values; thus high biomass did not result from species dominance. So-called complementarity and selection effects were similar across density and evenness treatments, indicating that the mechanisms underpinning the biodiversity effects were not altered. Species richness was the dominant driver of aboveground biomass, irrespective of variations in total densities and species abundance distributions at the start of the experiment; rejecting the hypothesis that initial differences in species abundance distributions might lead to different “stable states” in community structure or biomass. Thus, results from previous biodiversity experiments that only manipulated species richness and composition should be quite robust and broadly generalizable.  相似文献   

17.
山脉是生物多样性研究的热点地区,以往关于山脉的研究多集中于地上植物和脊椎动物,无脊椎动物相关的研究明显滞后。跳虫(Collembola)是土壤无脊椎动物的主要类群之一,在分解有机质、疏松和活化土壤过程中发挥着重要的作用。以跳虫为研究对象,采用梯度格局法,在长白山北坡自海拔800 m至1700 m,每隔150 m进行凋落物层和土壤层样品的采集,对比分析了土壤层和凋落物层的群落组成与群落结构,采用4个物种多样性指数(丰富度指数、Pielou均匀度指数、Shannon-Weiner多样性指数和Simpson多样性指数)和4个功能多样性指数(功能丰富度FRic指数、功能均匀度FEve指数、二次熵Rao''s Q指数和功能离散FEiv指数),探讨了多样性沿海拔梯度的分布格局。共获得跳虫5542头,隶属于12科42属83种,其中等节跳科为绝对优势类群(相对密度>50%)。非度量多维尺度分析结果表明,凋落物层和土壤层的跳虫群落结构差异显著,长角跳科、鳞跳科和疣跳科物种多分布于凋落物层,而棘跳科物种多分布于土壤层。线性或二次回归模型结果表明,在凋落物层跳虫的丰富度指数,Shannon-Weiner多样性指数和Simpson多样性指数沿海拔梯度的变化呈增加格局;但在土壤层跳虫物种多样性指数沿海拔梯度的变化无明显趋势。在凋落物层,跳虫的功能丰富度指数和功能离散度Rao''s Q指数随海拔梯度的变化呈现单峰分布格局;在土壤层,跳虫的功能丰富度指数随海拔梯度的变化也呈现单峰分布格局,但其他功能多样性指数沿海拔梯度的变化无明显趋势。研究表明凋落物层和土壤层跳虫的群落组成,群落结构及多样性存在显著差异,跳虫的物种多样性指数和功能多样性指数对海拔梯度变化的响应不同,未来在探讨土壤动物沿海拔梯度的分布格局及其物种共存机制时,应综合考量垂直分层(凋落物层和土壤层)和多个度量维度(物种多样性和功能多样性)。  相似文献   

18.
Positive relationships between species richness and ecosystem processes such as productivity or nitrogen cycling can be the result of a number of mechanisms. We examined how species richness, biomass, and legume presence, diversity, and abundance explained nitrogen dynamics in experimental grassland plots in northern Sweden. Nitrogen concentrations and '15N values were measured in plants grown in 28 mixtures (58 plots) including 1, 2, 4, 8 or 12 local grassland species over four years. Values for '15N declined over time for all three functional groups (grasses, legumes, and non-leguminous forbs), suggesting greater reliance on N fixed by legumes over time by all species. Above ground percent nitrogen (%N) also declined over time but root %N and total N did not. Path analysis of above ground data suggested that two main factors affected %N and the size of the N pool. First, higher plant diversity (species richness) increased total N through increased biomass in the plot. Although in the first two years of the experiment this was the result of a greater probability of inclusion of at least one legume, in the last two years diversity had a significant effect on biomass beyond this effect. Second, percent legumes planted in the plots had a strong effect on above ground %N and '15N, but a much smaller effect on above ground biomass. In contrast, greater plant diversity affected N in roots both by increasing biomass and by decreasing %N (after controlling for effects mediated by root biomass and legume biomass). Increased legume biomass resulted in higher %N and lower '15N for both non-legume forbs and grasses in the first year, but only for grasses in the third year. We conclude that a sampling effect (greater probability of including a legume) contributed towards greater biomass and total N in high-diversity communities early on in the experiment, but that over time this effect weakened and other positive effects of diversity became more important.  相似文献   

19.
A total of 139 collembolan species from 55 genera were found in coastal tundra near the settlement of Lavrentiya in the eastern part of the Chukchi Peninsula. The local fauna of the region is quite “Beringian” in species composition but its structure appears to be in full agreement with the known characteristics of southern tundra faunas of other sectors in the Arctic. The specificity of collembolan complexes of the main plant associations in the studied area is not very high because the predominant collembolan species usually inhabit a wide range of communities. The performed study on Collembola fails to confirm the conventional view of a significantly higher diversity of northeastern Palaearctic faunas. Despite the rather southern position of the studied coastal tundra, the species richness of its collembolan fauna seems to be the same as or only slightly higher than that of analogous landscapes in the other Arctic sectors. The apparent discrepancy between relatively low diversity of Collembola at the local level as shown herein and its rich regional fauna may be the result of increased differentiation of the collembolan fauna of the region characterized by very complex orography and extremely contrasting climatic conditions.  相似文献   

20.
Biodiversity experiments generally report a positive effect of plant biodiversity on aboveground biomass (overyielding), which typically increases with time. Various studies also found overyielding for belowground plant biomass, but this has never been measured over time. Also, potential underlying mechanisms have remained unclear. Differentiation in rooting patterns among plant species and plant functional groups has been proposed as a main driver of the observed biodiversity effect on belowground biomass, leading to more efficient belowground resource use with increasing diversity, but so far there is little evidence to support this. We analyzed standing root biomass and its distribution over the soil profile, along a 1–16 species richness gradient over eight years in the Jena Experiment in Germany, and compared belowground to aboveground overyielding. In our long‐term dataset, total root biomass increased with increasing species richness but this effect was only apparent after four years. The increasingly positive relationship between species richness and root biomass, explaining 12% of overall variation and up to 28% in the last year of our study, was mainly due to decreasing root biomass at low diversity over time. Functional group composition strongly affected total standing root biomass, explaining 44% of variation, with grasses and legumes having strong overall positive and negative effects, respectively. Functional group richness or interactions between functional group presences did not strongly contribute to overyielding. We found no support for the hypothesis that vertical root differentiation increases with species richness, with functional group richness or composition. Other explanations, such as stronger negative plant–soil feedbacks in low‐diverse plant communities on standing root biomass and vertical distribution should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号