首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types.  相似文献   

2.
The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness.  相似文献   

3.
Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree-grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3.5 m) and very large trees (ca. 9 m) was as much as 40% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees (<2.3 m). Moderate herbivory enhanced these effects slightly. Grass species composition differed beneath and beyond the tree canopy but not between tree size classes. As large trees significantly improve the grass nutrient quality for grazers in contrast to smaller trees, the decline of the former should be halted. The presence of trees further increases grass species diversity and patchiness by favouring shade-tolerant species. Both grazing wildlife and livestock will benefit from the presence of large trees because of their structural and functional importance for savannahs.  相似文献   

4.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

5.
Fire and herbivory are important determinants of nutrient availability in savanna ecosystems. Fire and herbivory effects on the nutritive quality of savanna vegetation can occur directly, independent of changes in the plant community, or indirectly, via effects on the plant community. Indirect effects can be further subdivided into those occurring because of changes in plant species composition or plant abundance (i.e., quality versus quantity). We studied relationships between fire, herbivory, rainfall, soil fertility, and leaf nitrogen (N), phosphorus (P), and sodium (Na) at 30 sites inside and outside of Serengeti National Park. Using structural equation modeling, we asked whether fire and herbivory influences were largely direct or indirect and how their signs and strengths differed within the context of natural savanna processes. Herbivory was associated with enhanced leaf N and P through changes in plant biomass and community composition. Fire was associated with reduced leaf nutrient concentrations through changes in plant community composition. Additionally, fire had direct positive effects on Na and nonlinear direct effects on P that partially mitigated the indirect negative effects. Key mechanisms by which fire reduced plant nutritive quality were through reductions of Na-rich grasses and increased abundance of Themeda triandra, which had below-average leaf nutrients.  相似文献   

6.
Ludwig F  De Kroon H  Prins HH 《Oecologia》2008,155(3):487-496
Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems.  相似文献   

7.
Ecosystems in the tropics are predicted to have stronger responses to nutrient enrichment, greater diversity, and more intense biotic interactions than in temperate areas. Mangrove forests, which occur across a broad biogeographic range from warm temperate to tropical, provide a unique opportunity to test these hypotheses by investigating the responses of herbivores to nutrient enrichment in temperate versus tropical latitudes. Mangroves are complex intertidal ecosystems with spatial differences in structure and diversity along tidal gradients and are threatened globally by human activities including nutrient over-enrichment. In this study, we used long-term fertilization experiments at the Indian River Lagoon, FL; Twin Cays, Belize; and Bocas del Toro, Panamá to determine how increased nutrients impact herbivore abundance and herbivory of Rhizophora mangle at the tree, forest, and regional scales. At these locations, which span approximately 2185 km and 18.4º of latitude, we fertilized individual trees with one of three treatments (Control, +N, +P) in two zones (fringe, scrub) along transects perpendicular to the shoreline and measured their responses for 4 years. Herbivory was measured as folivory, loss of yield, and tissue mining. Although nutrient enrichment altered plant growth, leaf traits, and nutrient dynamics, these variables had little effect on folivory at any location. Our results did not support the prediction that herbivory and per capita consumption are greatest at the most tropical location. Instead, folivory was highest at the most temperate location and lowest at the intermediate location. Folivory was generally higher in the fringe than in the scrub zone, but the pattern varied by location, herbivore, and nutrient treatment. Folivory by a dominant herbivore, Aratus pisonii, decreased from the highest to the lowest latitude. Our data suggest that factors controlling population dynamics of A. pisonii cascade to the mangrove canopy, linking herbivory to crab densities.  相似文献   

8.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

9.
The plant metabolite composition is modulated by various abiotic and biotic factors including nutrient availability and herbivory. In turn, induced changes in plant quality can affect herbivore performance and mediate indirect interactions between spatially separated herbivores sharing a host. Studies on plant-mediated herbivore interactions have been carried out at single fertilization regimes only, but we hypothesized that nutrient availability modifies these interactions. Therefore, we studied the interactions between two vascular tissue herbivores, the aboveground feeding aphid Brevicoryne brassicae and the belowground infesting nematode Heterodera schachtii, on Arabidopsis thaliana grown under two nitrate fertilization conditions (varying by 33 %). Furthermore, we investigated plant growth and primary metabolic responses to fertilization and herbivore treatments, which could potentially mediate these interactions, as the herbivores may act as metabolic sinks. Whereas nematodes had no effects on aphids, aphid presence influenced nematodes in opposite directions, depending on fertilization: at low nitrate supply, aphids had a promoting effect on nematodes, whereas at high nitrate fertilization they lowered the nematode infestation compared to control plants. Plants produced significantly more biomass under high nitrate supply but C and N contents were not altered. Primary metabolite profiles differed only marginally between roots of both fertilization treatments in plants with and without aphids, indicating that nematodes may respond to these or other metabolic modifications, which are caused by minute environmental changes, in a sensitive way. Our results highlight the need to consider the importance of plant nutrient availability on the outcome of interactions between co-occurring herbivores in future studies.  相似文献   

10.
In savannas, the tree-grass balance is governed by water, nutrients, fire and herbivory, and their interactions. We studied the hypothesis that herbivores indirectly affect vegetation structure by changing the availability of soil nutrients, which, in turn, alters the competition between trees and grasses. Nine abandoned livestock holding-pen areas (kraals), enriched by dung and urine, were contrasted with nearby control sites in a semi-arid savanna. About 40 years after abandonment, kraal sites still showed high soil concentrations of inorganic N, extractable P, K, Ca and Mg compared to controls. Kraals also had a high plant production potential and offered high quality forage. The intense grazing and high herbivore dung and urine deposition rates in kraals fit the accelerated nutrient cycling model described for fertile systems elsewhere. Data of a concurrent experiment also showed that bush-cleared patches resulted in an increase in impala dung deposition, probably because impala preferred open sites to avoid predation. Kraal sites had very low tree densities compared to control sites, thus the high impala dung deposition rates here may be in part driven by the open structure of kraal sites, which may explain the persistence of nutrients in kraals. Experiments indicated that tree seedlings were increasingly constrained when competing with grasses under fertile conditions, which might explain the low tree recruitment observed in kraals. In conclusion, large herbivores may indirectly keep existing nutrient hotspots such as abandoned kraals structurally open by maintaining a high local soil fertility, which, in turn, constrains woody recruitment in a negative feedback loop. The maintenance of nutrient hotspots such as abandoned kraals by herbivores contributes to the structural heterogeneity of nutrient-poor savanna vegetation.  相似文献   

11.
Ludwig  Fulco  de Kroon  Hans  Berendse  Frank  Prins  Herbert H.T. 《Plant Ecology》2004,170(1):93-105
In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to obtain an insight into which resources determine changes in productivity and composition of the herbaceous layer. Soil nutrient availability increased with tree age and size and was lowest in open grassland and highest under dead trees. The lower N:P ratios of grasses from open grassland compared to grasses from under trees suggested that productivity in open grassland was limited by nitrogen, while under trees the limiting nutrient was probably P. N:P ratios of grasses growing under bushes and small trees were intermediate between large trees and open grassland indicating that the understorey of Acacia trees seemed to change gradually from a N-limited to a P-limited vegetation. Soil moisture contents were lower under than those outside of canopies of large Acacia trees suggesting that water competition between trees and grasses was important. Species composition of the herbaceous layer under Acacia trees was completely different from the vegetation in open grassland. Also the vegetation under bushes of Acacia tortilis was different from both open grassland and the understorey of large trees. The main factor causing differences in species composition was probably nutrient availability because species compositions were similar for stands of similar soil nutrient concentrations even when light and water availability was different. Changes in species composition did not result in differences in above-ground biomass, which was remarkably similar under different sized trees and in open grassland. The only exception was around dead trees where herbaceous plant production was 60% higher than under living trees. The results suggest that herbaceous layer productivity did not increase under trees by a higher soil nutrient availability, probably because grass production was limited by competition for water. This was consistent with the high plant production around dead trees because when trees die, water competition disappears but the high soil nutrient availability remains. Hence, in addition to tree soil nutrient enrichment, below-ground competition for water appears to be an important process regulating tree-grass interactions in semi-arid savanna.  相似文献   

12.
Plant structural defences against mammals play an important role in ecosystem functioning as they simultaneously mediate the fitness of both animals and plants. The efficiency of structural defences can be described by the amount of plant material an animal can remove in one bite. Quantifying bite size by direct observation is difficult requiring controlled access to both the plants of interest and the herbivores. A method called the bite size index (BSI) has been proposed using human bites to simulate the bite size of medium-sized mammalian herbivores. In this paper, we evaluated the utility of the BSI for assessing the efficacy of plant structural defences. We analysed the intra- and inter-specific variability of the BSI in an African savanna (Hluhluwe–iMfolozi, South Africa) rich in herbivores, its repeatability between recorders, how the results reflect known properties of plant structural defences and how well the index correlates with the bite size of goats and its efficacy for explaining species distribution on a fire–herbivory gradient. The BSI was readily applied to a large set (n = 55) of plant species and proved to be consistent among recorders (8 of the 9 recorders obtained similar estimates). Bite sizes of goats and human observers were strongly correlated for 14 plant species (R 2 = 0.70) with divergent leaf and branch types. An analysis of BSI for 55 plant species disclosed two main contributory factors: leaf dimensions and spinescence. The BSI was significantly related to plant species distribution on a fire–herbivore gradient in an African savanna.  相似文献   

13.
Many herbaceous meadows are dominated by competitive non‐native grasses and subject to ungulate herbivory, ecological processes that shift the proportional biomass of plant groups in the community. Predicting the outcome of restoration is complicated because herbivory and competition can interact. We examined the relationship between herbivory by native black‐tailed deer and domestic sheep and dominance of non‐native grasses in Garry oak meadows, one of North America's most endangered habitat types. A 3‐year factorial experiment tested the effects of mowing and fencing on plant community biomass, categorized into eight groups by geographic origin (native/non‐native), growth form (annual/perennial), and plant type (forb/grass). To test if the rarity of native plant groups was related to herbivory, we estimated ungulate foraging preferences for each plant group. Mowing and fencing treatments interacted for annual and perennial non‐native grasses. Dominance was shifted from non‐native to native grasses only when both mowing and fencing were applied. Fencing increased the total biomass, whereas mowing had no overall effect; however, fencing alone did not affect any individual plant group. Mowing shifted dominance from grasses to forbs, although both native and non‐native forbs benefited from the increased light availability. We also noted that herbivore fecal pellet densities were greatest in the spring, which coincided with the peak season of their preferred plant group, native perennial forbs. Overall, applying both mowing and fencing was the most effective restoration treatment to increase native plant groups and biomass.  相似文献   

14.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

15.
Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.  相似文献   

16.
Herbivores cause treefalls in African savannas, but rates are unknown at large scales required to forecast changes in biodiversity and ecosystem processes. We combined landscape‐scale herbivore exclosures with repeat airborne Light Detection and Ranging of 58 429 trees in Kruger National Park, South Africa, to assess sources of savanna treefall across nested gradients of climate, topography, and soil fertility. Elephants were revealed as the primary agent of treefall across widely varying savanna conditions, and a large‐scale ‘elephant trap’ predominantly removes maturing savanna trees in the 5–9 m height range. Treefall rates averaged 6 times higher in areas accessible to elephants, but proportionally more treefall occurred on high‐nutrient basalts and in lowland catena areas. These patterns were superimposed on a climate‐mediated regime of increasing treefall with precipitation in the absence of herbivores. These landscape‐scale patterns reveal environmental controls underpinning herbivore‐mediated tree turnover, highlighting the need for context‐dependent science and management.  相似文献   

17.
Herbivory contributes substantially to plant functional diversity and in ways that move far beyond direct defence trait patterns, as effective growth strategies under herbivory require modification of multiple functional traits that are indirectly related to defence. In order to understand how herbivory has shaped plant functional diversity, we need to consider the physiology and architecture of the herbivores and how this constrains effective defence strategies. Here we consider herbivory by mammals in savanna communities that range from semi‐arid to humid conditions. We posited that the saplings of savanna trees can be grouped into two contrasting defence strategies against mammals, namely architectural defence versus low nutrient defence. We provide a mechanistic explanation for these different strategies based on the fact that plants are under competing selection pressures to limit herbivore damage and outcompete neighbouring plants. Plant competitiveness depends on growth rate, itself a function of leaf mass fraction (LMF) and leaf nitrogen per unit mass (Nm). Architectural defence against vertebrates (which includes spinescence) limits herbivore access to plant leaf materials, and partly depends on leaf‐size reduction, thereby compromising LMF. Low nutrient defence requires that leaf material is of insufficient nutrient value to support vertebrate metabolic requirements, which depends on low Nm. Thus there is an enforced tradeoff between LMF and Nm, leading to distinct trait suites for each defence strategy. We demonstrate this tradeoff by showing that numerous traits can be distinguished between 28 spinescent (architectural defenders) and non‐spinescent (low nutrient defenders) Fabaceae tree species from savannas, where mammalian herbivory is an important constraint on plant growth. Distributions of the strategies along an LMF‐Nm tradeoff further provides a predictive and parsimonious explanation for the uneven distribution of spinescent and non‐spinescent species across water and nutrient gradients.  相似文献   

18.
This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly.
Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

19.
At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unknown. Two contrasting types of herbivory can be distinguished in the aquatic vegetation of the shallow lake Lauwersmeer. In summer, predominantly above-ground tissues are eaten, whereas in winter, waterfowl forage on below-ground plant propagules. In a 4-year exclosure study we experimentally separated above-ground herbivory by waterfowl and large fish in summer from below-ground herbivory by Bewick’s swans in winter. We measured the individual and combined effects of both herbivory periods on the composition of the three-species aquatic plant community. Herbivory effect sizes varied considerably from year to year. In 2 years herbivore exclusion in summer reinforced dominance of Potamogeton pectinatus with a concomitant decrease in Potamogeton pusillus, whereas no strong, unequivocal effect was observed in the other 2 years. Winter exclusion, on the other hand, had a negative effect on Zannichellia palustris, but the effect size differed considerably between years. We suggest that the colonization ability of Z. palustris may have enabled this species to be more abundant after reduction of P. pectinatus tuber densities by swans. Evenness decreased due to herbivore exclusion in summer. We conclude that seasonally tied above- and below-ground herbivory may each stimulate different components of a macrophyte community as they each favoured a different subordinate plant species.  相似文献   

20.
Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing influence vegetation structure and cover and facilitate other wild herbivores in the Mara region of Kenya. We used 5 km-long transects, each with 13 plots measuring 10 × 10 m2, and which radiate from rivers in the Masai Mara National Reserve and adjoining community pastoral ranches. For each plot, we measured the height and visually estimated the percent cover of grasses, forbs, shrubs and bare ground, herbivore abundance and species richness. Our results showed that grass height was shortest closest to rivers in both landscapes, increased with increasing distance from rivers in the reserve, but was uniformly short in the pastoral ranches. Shifting mosaics of short grass lawns interspersed with patches of medium to tall grasses occurred within 2.5 km of the rivers in the reserve in areas grazed habitually by hippos. Hence, hippo grazing enhanced the structural heterogeneity of vegetation but livestock grazing had a homogenizing effect in the pastoral ranches. The distribution of biomass and the species richness of other ungulates with distance from rivers followed a quadratic pattern in the reserve, suggesting that hippopotamus grazing attracted more herbivores to the vegetation patches at intermediate distances from rivers in the reserve. However, the distribution of biomass and the species richness of other ungulates followed a linear pattern in the pastoral ranches, implying that herbivores avoided areas grazed heavily by livestock in the pastoral ranches, especially near rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号