首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Progesterone regulates several functions through the interaction with its intracellular receptor (PR) which expresses two isoforms with different functions and regulation: PR-A and PR-B. Both PR isoforms have been detected in human astrocytomas, the most common and aggressive primary brain tumours, but their regulation and function are unknown. We studied the effects of estradiol, progesterone and their receptor antagonists (ICI 182,780 and RU 486) on PR isoforms content in U373 and D54 human astrocytoma cell lines, respectively derived from grades III and IV astrocytomas, by Western blot analysis. In U373 cells we also evaluated the effects of PR-A overexpression on cell growth. We observed that in U373 cells estradiol increased the content of both PR isoforms whereas in D54 cells it had no effects. Estradiol effects were blocked by ICI 182,780. In both cell lines, PR isoforms content was down-regulated by progesterone after estradiol treatment. This effect was blocked by RU 486. We observed that overexpression of PR-A significantly diminished the increase in U373 cells number produced after progesterone treatment. Our results suggest a differential PR isoforms regulation depending on the evolution grade of human astrocytoma cells, and an inhibitory role of PR-A on progesterone effects on astrocytomas cell growth.  相似文献   

5.
6.
7.
Regulation of progesterone receptor (PR) by estradiol-17beta (E(2)) in mouse uterine and vaginal epithelia was studied. In ovariectomized mice, PR expression was low in both vaginal stroma and epithelium, but high in uterine epithelium. E(2) induced PR in vaginal epithelium and stroma, but down-regulated PR in uterine epithelium. Analysis of estrogen receptor alpha (ERalpha) knockout (ERKO) mice showed that ERalpha is essential for E(2)-induced PR expression in both vaginal epithelium and stroma, and for E(2)-induced down-regulation, but not constitutive expression of PR in uterine epithelium. Regulation of PR by E(2) was studied in vaginal and uterine tissue recombinants made with epithelium and stroma from wild-type and ERKO mice. In the vaginal tissue recombinants, PR was induced by E(2) only in wild-type epithelium and/or stroma. Hence, in vagina, E(2) induces PR directly via ERalpha within the tissue. Conversely, E(2) down-regulated epithelial PR only in uterine tissue recombinants constructed with wild-type stroma. Therefore, down-regulation of uterine epithelial PR by E(2) requires stromal, but not epithelial, ERalpha. In vitro, isolated uterine epithelial cells retained a high PR level with or without E(2), which is consistent with an indirect regulation of uterine epithelial PR in vivo. Thus, E(2) down-regulates PR in uterine epithelium through paracrine mechanisms mediated by stromal ERalpha.  相似文献   

8.
9.
10.
Progesterone and its interaction with nuclear progesterone receptors (PR) PR-A and PR-B play a critical role in the regulation of female reproductive function in all mammals. However, our knowledge of the regulation and possible cellular function of PR protein isoforms in the fallopian tube and uterus in vivo is still very limited. In the present study, we revealed that equine chorionic gonadotropin (eCG) treatment resulted in a time-dependent increase in expression of both isoforms, reaching a maximal level at 48 h in the fallopian tube. Regulation of PR-A protein expression paralleled that of PR-B protein expression. However, in the uterus PR-B protein levels increased and peaked earlier than PR-A protein levels after eCG treatment. With prolonged exposure to eCG, PR-B protein levels decreased, whereas PR-A protein levels continued to increase. Furthermore, subsequent treatment with human (h)CG decreased the levels of PR protein isoforms in both tissues in parallel with increased endogenous serum progesterone levels. To further elucidate whether progesterone regulates PR protein isoforms, we demonstrated that a time-dependent treatment with progesterone (P(4)) decreased the expression of PR protein isoforms in both tissues, whereas decreases in p27, cyclin D(2), and proliferating cell nuclear antigen protein levels were observed only in the uterus. To define the potential PR-mediated effects on apoptosis, we demonstrated that the PR antagonist treatment increased the levels of PR protein isoforms, induced mitochondrial-associated apoptosis, and decreased in epidermal growth factor (EGF) and EGF receptor protein expression in both tissues. Interestingly, immunohistochemistry indicated that the induction of apoptosis by PR antagonists was predominant in the epithelium, whereas increase in PR protein expression was observed in stromal cells of both tissues. Taken together, these observations suggest that 1) the tissue-specific and hormonal regulation of PR isoform expression in mouse fallopian tube and uterus, where they are potentially involved in regulation of mitochondrial-mediated apoptosis depending on the cellular compartment; and 2) a possible interaction between functional PR protein and growth factor signaling may have a coordinated role for regulating apoptotic process in both tissues in vivo.  相似文献   

11.
12.
The objective of this study was to determine whether uterine stromal and/or epithelial progesterone receptor (PR) is required for the antagonism by progesterone (P(4)) of estradiol-17beta (E(2)) action on expression of PR and lactoferrin in uterine epithelium. Uterine tissue recombinants were prepared with epithelium (E) and stroma (S) from wild-type (wt) and PR knockout (PRKO) mice: wt-S+wt-E and PRKO-S+wt-E. P(4) action on epithelial PR expression was studied in wt-S+wt-E and PRKO-S+wt-E tissue recombinants. E(2) down-regulated epithelial PR in both types of tissue recombinants, but P(4) blocked E(2)-induced down-regulation of epithelial PR only in wt-S+wt-E tissue recombinants. Thus, P(4) requires stromal PR to inhibit E(2)-induced down-regulation of epithelial PR. Epithelial PR is not sufficient in itself. The inhibitory effect of P(4) on lactoferrin expression was studied in 4 types of tissue recombinants (wt-S+wt-E, PRKO-S+wt-E, wt-S+PRKO-E, and PRKO-S+PRKO-E). E(2) induced lactoferrin in all 4 types of tissue recombinants. P(4) blocked E(2)-induced lactoferrin expression only in wt-S+wt-E tissue recombinants. In wt-S+PRKO-E tissue recombinants, P(4) inhibited lactoferrin expression only partially. P(4) failed to block E(2)-induced lactoferrin expression in PRKO-S+wt-E and PRKO-S+PRKO-E tissue recombinants. Thus, both epithelial and stromal PR are essential for full P(4) inhibition of E(2)-induced lactoferrin expression.  相似文献   

13.
14.
Acute (0.5–4 h) treatment of estradiol (E)-primed female rat pituitary cells with progesterone (P) augments gonadotropin-releasing hormone (GnRH)-induced LH release, whereas chronic (48 h) P-treatment reduces pituitary responsiveness to the hypothalamic decapeptide. Dispersed E-primed (48 h, 1 nM) rat pituitary cells were cultured for 4 or 48 h in the presence of 100 nM P to assess the effects of the progestagen on GnRH receptors and on gonadotrope responsiveness to the decapeptide. P-treatment (4 h) significantly augmented GnRH-receptor concentrations (4.44 ± 0.6 fmol/106 cells) as compared to cells treated only with E (2.6 ± 0.5fmol/106 cells). Parallel significant changes in GnRH-induced LH secretion were observed. The acute increase in GnRH-receptor number was nearly maximal (180% of receptor number in cells treated with E alone) within 30 min of P addition. Chronic P-treatment (48 h) significantly reduced pituitary responsiveness to GnRH as compared to E-treatment. The GnRH-receptor concentrations (3.9 ± 0.6 fmol/106 cells), however, remained elevated above those in E-primed cells. GnRH-receptor affinity was not influenced by any of the different treatments. These results indicate that the acute facilitatory P-effect on GnRH-induced LH release is at least chronologically closely related to an increase in GnRH-receptor concentration. The chronic negative P-effect on pituitary responsiveness to GnRH, however, shows no relation to changes in available GnRH receptors.  相似文献   

15.
Progesterone has two types of inhibitory effects on female sexual behavior that have been well-documented in the guinea pig. The first occurs when high levels of progesterone are present around the start of the estrogen-priming process (“concurrent inhibition”). The second occurs immediately after the display of an estrogen-progesterone-induced period of estrous behavior (“sequential inhibition”). In the present set of experiments, we show that the rat, like the guinea pig, is capable of exhibiting both of these inhibitory effects of progesterone. However, rats require higher doses of progesterone than guinea pigs, at least for concurrent inhibition to be evident. In addition, we show that the dose of progesterone required in a single injection to produce concurrent inhibition is higher than the dose required to produce sequential inhibition in rats. A theory of how progesterone may be accomplishing its inhibitory effects on female sexual behavior in rodents is presented.  相似文献   

16.
Previous studies suggested that opioid receptor agonists infused into the lateral ventricles can inhibit (through mu receptors) or facilitate (through delta receptors) the lordosis behavior of ovariectomized (OVX) rats treated with estrogen and a low dose of progesterone. The present study investigated the behavioral and hormonal specificity of those effects using more selective opioid receptor agonists. Sexually experienced OVX rats were implanted stereotaxically with guide cannulae aimed at the right lateral ventricle. One group of rats was treated with estradiol benzoate (EB, 10 micrograms) 48 hr and progesterone (P, 250 micrograms) 4 hr before testing, whereas the other group was treated with EB alone. Rats were infused with different doses of the selective mu-receptor agonist DAMGO, the selective delta-receptor agonist DPDPE, or the selective kappa-receptor agonist U50-488. The females were placed with a sexually vigorous male in a bilevel chamber (Mendelson and Gorzalka, 1987) for three tests of sexual behavior, beginning 15, 30, and 60 min after each infusion. DAMGO reduced lordosis quotients and magnitudes significantly in rats treated with EB and P, but not in rats treated with EB alone. In contrast, DPDPE and U50-488H increased lordosis quotients and magnitudes significantly in both steroid-treatment groups. Surprisingly, measures of proceptivity, rejection responses, and level changes were not affected significantly by mu or kappa agonists, although proceptivity and rejection responses were affected by DPDPE treatment. These results suggest that the effects of lateral ventricular infusions of opioid receptor agonists on the sexual behavior of female rats are relatively specific to lordosis behavior. Moreover, the facilitation of lordosis behavior by delta- or kappa-receptor agonists is independent of progesterone treatment, whereas the inhibitory effect of mu-receptor agonists on lordosis behavior may require the presence of progesterone.  相似文献   

17.
A nude mouse system where the biological, morphological and biochemical characteristics of human endometrial carcinoma are maintained during serial transplantation has been previously described. Applications of this system to the study of (a) hormonal sensitivity (b) treatment strategies and (c) progesterone receptor physiology of human endometrial carcinomas are presented here.  相似文献   

18.
Progesterone and estradiol participate in the regulation of several reproductive functions through interaction with intracellular progesterone receptors (PR) and estrogen receptors (ER), respectively. In this work, we determined PR and ER-alpha isoforms content in the brain of chicks of both sexes on days 8 and 13 of embryonic development as well as on the day of hatching by Western blot analysis. PR isoforms protein content increased during embryonic development in both female and male chick brain. The highest PR isoforms content was observed on the day of hatching in both sexes. Interestingly, PR-A content was higher in the brain of chick males than in that of females on day 8 of embryonic development. PR-A/PR-B ratio was higher in the brain of males than in that of females at all ages. We found two ER-alpha isoforms of 66 and 52 kDa; the content of both isoforms was higher in the brain of females than in that of males on days 8 and 13 of embryonic development. An opposite pattern of ER-alpha isoforms content was observed. In males, ER-alpha content increased during embryonic development whereas in the females it decreased during this process. These results indicate that the content of PR and ER-alpha isoforms is related to the degree of brain development in chicks, and suggest that PR and ER-alpha isoforms should exhibit sexual dimorphism in the brain of chicks during embryonic development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号