共查询到20条相似文献,搜索用时 0 毫秒
1.
Masaya Yamaguchi Kenji Satoo Hironori Suzuki Yuko Fujioka Yoshinori Ohsumi Fuyuhiko Inagaki Nobuo N. Noda 《Journal of molecular biology》2018,430(3):249-257
Atg8 is a unique ubiquitin-like protein that is covalently conjugated with a phosphatidylethanolamine through reactions similar to ubiquitination and plays essential roles in autophagy. Atg7 is the E1 enzyme for Atg8, and it activates the C-terminal Gly116 of Atg8 using ATP. Here, we report the crystal structure of Atg8 bound to the C-terminal domain of Atg7 in an unprecedented mode. Atg8 neither contacts with the central β-sheet nor binds to the catalytic site of Atg7, both of which were observed in previously reported Atg7–Atg8 structures. Instead, Atg8 binds to the C-terminal α-helix and crossover loop, thereby changing the autoinhibited conformation of the crossover loop observed in the free Atg7 structure into a short helix and a disordered loop. Mutational analyses suggested that this interaction mode is important for the activation reaction. We propose that Atg7 recognizes Atg8 through multiple steps, which would be necessary to induce a conformational change in Atg7 that is optimal for the activation reaction. 相似文献
2.
The cyclic AMP and glycogen concentrations and the activities of phosphorylase kinase, phosphorylase a and glycogen synthase a were not different in livers from lean or ob/ob mice despite increased plasma glucose and insulin in the obese group. The liver water content was decreased by 10% in the obese mice. In hepatocytes isolated from lean mice and incubated with increasing glucose concentrations (14-112 mM), a sequential inactivation of phosphorylase and activation of glycogen synthase was observed. In hepatocytes from obese mice the inactivation of phosphorylase was not followed by an activation of synthase. The inactivation of phosphorylase occurred more rapidly and was followed by an activation of synthase in hepatocytes isolated from both groups of mice when in the incubation medium Na+ was replaced by K+ or when Ca2+ was omitted and 2.5 mM-EGTA included. The inactivation of phosphorylase and activation of synthase were not different in broken-liver-cell preparations from lean and obese animals. The re-activation of phosphorylase in liver filtrates in the presence of 0.1 microM-cyclic AMP and MgATP was inhibited by about 70% by EGTA and stimulated by Ca2+ and was always greater in preparations from ob/ob mice. The apparent paradox between the impairment of glycogen metabolism in isolated liver preparations and the situation in vivo in obese mice is discussed. 相似文献
3.
Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum 总被引:1,自引:0,他引:1
Asakura Y Kimura E Usuda Y Kawahara Y Matsui K Osumi T Nakamatsu T 《Applied and environmental microbiology》2007,73(4):1308-1319
L-glutamate overproduction in Corynebacterium glutamicum, a biotin auxotroph, is induced by biotin limitation or by treatment with certain fatty acid ester surfactants or with penicillin. We have analyzed the relationship between the inductions, 2-oxoglutarate dehydrogenase complex (ODHC) activity, and L-glutamate production. Here we show that a strain deleted for odhA and completely lacking ODHC activity produces L-glutamate as efficiently as the induced wild type (27.8 mmol/g [dry weight] of cells for the ohdA deletion strain compared with only 1.0 mmol/g [dry weight] of cells for the uninduced wild type). This level of production is achieved without any induction or alteration in the fatty acid composition of the cells, showing that L-glutamate overproduction can be caused by the change in metabolic flux alone. Interestingly, the L-glutamate productivity of the odhA-deleted strain is increased about 10% by each of the L-glutamate-producing inductions, showing that the change in metabolic flux resulting from the odhA deletion and the inductions have additive effects on L-glutamate overproduction. Tween 40 was indicated to induce drastic metabolic change leading to L-glutamate overproduction in the odhA-deleted strain. Furthermore, optimizing the metabolic flux from 2-oxoglutarate to L-glutamate by tuning glutamate dehydrogenase activity increased the l-glutamate production of the odhA-deleted strain. 相似文献
4.
Muscle-specific deletion of the Glut4 glucose transporter alters multiple regulatory steps in glycogen metabolism 总被引:6,自引:0,他引:6
下载免费PDF全文

Kim YB Peroni OD Aschenbach WG Minokoshi Y Kotani K Zisman A Kahn CR Goodyear LJ Kahn BB 《Molecular and cellular biology》2005,25(21):9713-9723
Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3beta (GSK3beta) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced. 相似文献
5.
Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia. 相似文献
6.
The neutrophil has been implicated as a source of oxygen free radicals provoking the reperfusion injury in various ischemic organs. This provided the motivation to explore the pathophysiologic role of the neutrophil in a swine model of postischemic latissimus dorsi myocutaneous flaps. Neutrophil function, neutrophil sequestration, and the anatomic distribution of muscle injury were estimated following a 6- to 8-hour global ischemic insult. Neutrophil function as measured by phorbol myristate acetate-stimulated superoxide production was found to be enhanced on reperfusion of ischemic flaps (n = 17). Neutrophil sequestration estimated from the arterial-venous difference of flap blood (n = 12) demonstrated that postischemic flaps more avidly sequester neutrophils than nonischemic flaps. The anatomic distribution of muscle injury (n = 7) was predominantly localized to the proximal portion of the ischemic flap. The enhanced functional response exhibited by neutrophils reperfusing an ischemic myocutaneous flap supports an active neutrophil role in the mediation of reperfusion injury. 相似文献
7.
8.
Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice 总被引:16,自引:0,他引:16
下载免费PDF全文

Dufresne SD Bjørbaek C El-Haschimi K Zhao Y Aschenbach WG Moller DE Goodyear LJ 《Molecular and cellular biology》2001,21(1):81-87
9.
Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response--the error-related negativity (ERN)--as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring. By relaying saccade-related efference copy signals, the thalamus appears to enable fast error processing. Furthermore early error processing based on internal information may contribute to error awareness which was reduced in the patients. 相似文献
10.
Field metabolic rates (via doubly labeled water), body compartmentalization of energy stores, and energy assimilation efficiencies were measured to assess all avenues of energy utilization in Uta stansburiana living in a low-level gamma-irradiated plot in Rock-Valley, Nevada. Comparison of energy budgets for radiation-sterilized females with those of nonirradiated control lizards revealed several substantial differences. Sterile females were heavier, mainly because they had extraordinarily large energy (fat) storage depots. Sterile females had much lower rates of energy expenditure via respiration and lower rates of energy intake by feeding. These differences are interpreted as indirect responses to radiation-induced sterility. Gastrointestinal tract function in sterile females was normal. There is little evidence of direct radiation effects on physiological functions other than reproduction. 相似文献
11.
Hiroshi Kawamoto Kazuhiko Ito Saburo Kashii Sumie Monden Masahiro Fujita Mihoko Norioka Yoshiki Sasai Minoru Okuma 《Journal of cellular biochemistry》1993,51(3):322-325
An adenosine deaminase (ADA;EC 3.5.4.4)-deficient B lymphoblastoid cell line BAD05 derived from a Japanese patient with severe combined immunodeficiency was characterized. As previously reported, one allele of BAD05 expresses undetectable ADA mRNA, and the other allele produces an aberrant mRNA without exon 7. Genomic ADA DNA of BAD05 spanning from a portion of exon 6 to a portion of exon 8 was amplified by PCR. The amplified fragments were cloned into a vector, and 8 clones were isolated and sequenced. The analytical result showed a single base change of G to A at the invariant 5′ GT of intron 7 of ADA gene in one allele of BAD05, which accounts for the elimination of exon 7 during splicing. © 1993 Wiley-Liss, Inc. 相似文献
12.
13.
Christiane St-Amant Stéphanie Lussier Jacques Lehoux Rémi-Martin Laberge Guylain Boissonneault 《Biochimie et biologie cellulaire》2006,84(1):55-66
There is a growing interest regarding the use of camptothecins (CPTs) for the management of ovarian cancer. Since topoisomerase I has been established as a prime target of these drugs in other experimental models, it was important to determine whether sensitivity to CPTs in ovarian cancer cells is also correlated with the cellular level of this enzyme. Despite the 7-fold increase in topoisomerase expression achieved by adenovirus-mediated expression, the sensitivity to a CPT derivative (topotecan), was not improved compared with control cells harboring an endogenous level of the enzyme. This observation is in accordance with the similar level of topoisomerase I activity found in control and overexpressing cells and suggests that these cells may efficiently regulate the enzyme activity. Indeed, topoisomerase I overexpressing cells are characterized by a lack of alkaline phosphatase sensitivity and elimination of the hyperphosphorylated form of the protein. Taken together, these observations strongly suggest that an alteration in the phosphorylation state of topoisomerase I could limit its activity and prevent improvement of CPT response in ovarian cancer cells. In addition, a limited extent of topoisomerase I phosphorylating activity was found in nuclear extract of OVCAR-3 cells. Hence, providing enhancement in topoisomerase I expression may not result in improvement of CPT response in ovarian cancer cells because of an efficient control of the phosphorylation state of the enzyme. 相似文献
14.
Takabayashi S Iwashita S Hirashima T Katoh H 《Experimental biology and medicine (Maywood, N.J.)》2007,232(5):695-699
We carried out molecular analyses of the novel flaky skin mutation, Ttc7(fsn-Jic )(a synonym for fsn(Jic)), which we found in a previous study. It was revealed that this mutation involved a genomic in-frame deletion including exons 9 and 10 of the Ttc7 gene, and that the genomic deletion in Ttc7 (fsn-Jic )may disrupt the tetratricopeptide repeat-2B domain of the TTC7 protein. Based on a comparison of three Ttc7 mutations, including Ttc7(fsn-J )(a synonym for fsn) and Ttc7(fsn-hea )(a synonym for hea), it was suggested that either exon 9 or exon 10 or both may play a more important role than the other exons of the Ttc7 gene. Ttc7 gene expression analyses using Northern blotting revealed that Ttc7 mRNA is expressed in 11 tissues, except muscle. In conclusion, we confirmed that the Ttc7 (fsn-Jic )mutation, as well as the Ttc7(fsn-J )and Ttc7 (fsn-hea )mutations, is responsible for abnormal phenotypes observed in various tissues of mice with the flaky skin mutation. 相似文献
15.
Green H Roy B Grant S Otto C Pipe A McKenzie D Johnson M 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(5):R1872-R1879
Chronic exposure to high altitude is known to result in changes in the mechanisms regulating O(2) delivery to the contracting muscle. However, the effects of acclimatization on metabolism in the contracting muscle cell remain unclear. In this study, we have investigated the hypothesis that acclimatization would result in a closer coupling between ATP utilization and ATP production and that the improved energy state would be accompanied by a reorganization of the metabolic pathways consisting of an increased oxidative and decreased glycolytic potential. Five men, mean age of 28 +/- 2 (SE) yr, performed a standardized, two-stage submaximal cycling task in normoxia for 20 min at each of 59 and 74% peak O(2) consumption before and 3-4 days after returning from a 21-day expedition to Mount Denali (6,194 m). Acclimatization was without effect in altering the resting values of the adenine nucleotides (ATP, ADP, AMP), inosine monophosphate (IMP), or phosphocreatine (PCr) in the vastus lateralis. During exercise (40 min) after acclimatization compared with preacclimatization, PCr was not as depressed (33.2 +/- 7.1 vs. 40.6 +/- 5.4 mmol/kg dry wt) and IMP (0.289 +/- 0.11 vs. 0. 131 +/- 0.03 mmol/kg dry wt) and lactate (26.1 +/- 6.2 vs. 18.6 +/- 8.8 mmol/kg dry wt) in contracting muscle were not as elevated (P < 0.05). Although no effect of acclimatization was observed for the maximal activity (mol. kg protein(-1). h(-1)) of citrate synthase (4. 76 +/- 0.44 vs. 4.94 +/- 0.45), lactate dehydrogenase was increased by 13% (36.5 +/- 2.6 vs. 41.2 +/- 3.1, P < 0.05). It is concluded that acclimatization results in an improved energy state in the contracting muscle when tested under normoxic conditions; however, these effects are not associated with a higher oxidative potential or a lower glycolytic potential as hypothesized. 相似文献
16.
S Grably M Verdys A Rossi 《Archives internationales de physiologie et de biochimie》1989,97(2):185-196
Myocardial hypoxia, induced by arrest of the artificial ventilation of anaesthetized open-chest rats, was utilized in order to study some aspects of the regulation of myocardial glycogen metabolism. Atenolol, a cardioselective beta-adrenergic receptor antagonist, and verapamil, an inhibitor of sarcolemmal calcium transfer, were used to determine the respective role of adenosine 3', 5'-cyclic monophosphate (cAMP) and calcium in the activation of the enzymes of glycogen phosphorolysis and synthesis. Glycogen degradation is reduced by atenolol treatment, as a consequence of a reduced activation of glycogen phosphorylase. Verapamil treatment has no significant effect, neither on the enzyme activation nor on the glycogen utilization. The activation of glycogen synthase, expressed by the conversion of the enzyme from the D to the I form, which results from the decrease in glycogen stores during hypoxia, is lowered under the effect of both drugs. However, in the beta-blocker treatment case, this effect results from a lower glycogen depletion while this effect is more specific in hearts from rats treated with verapamil. Under the effect of verapamil, the reduction of synthase activation, for a similar depletion of glycogen stores, was confirmed by experiments using isolated rat hearts submitted to ischaemia. These results show that: 1. the glycogenolysis in the hypoxic myocardium in situ is mainly controlled by a cAMP-dependent enzyme conversion or by metabolic allosteric effectors; 2. the activation of myocardial glycogen synthase, which is essentially correlated to the reduction of glycogen stores, is also calcium-dependent and most probably totally cAMP-independent. 相似文献
17.
Glycogen, a branched polymer of glucose, acts as an intracellular carbon and energy reserve in many tissues and cell types. An important pathway for its degradation is by transport to lysosomes in an autophagy-like process. It has been proposed that starch-binding domain-containing protein 1 (Stbd1) may participate in this mechanism by anchoring glycogen to intracellular membranes. In addition, Stbd1 has been reported to interact with a known autophagy protein, GABARAPL1, a member of the Atg8 family. Here, we confirm this interaction and identify an Atg8 interacting motif (AIM) in Stbd1 necessary for GABARAPL1 binding as judged by co-immunoprecipitation from cell extracts and co-localization in cells as evidenced by immunofluorescence microscopy. The AIM sequence of Stbd1 200HEEWEMV206 lies within a predicted disordered region of the molecule and fits the consensus of other AIM sequences in cargo-specifying proteins such as p62 and Nix. Mutation of the AIM, including single point mutations of either W203 or V206, eliminated the co-localization of Stbd1 with both over-expressed and endogenous GABARAPL1. Stbd1 may therefore function as a novel cargo binding protein that delivers glycogen to lysosomes in an autophagic pathway that could be termed “glycophagy”. 相似文献
18.
Anjana Lal Pettigrew Frank Greenberg C. Thomas Caskey David H. Ledbetter 《Human genetics》1991,87(4):452-456
Summary An 11-month-old infant with Greig cephalopolysyndactyly syndrome and mild developmental delay is described. High-resolution chromosomal analysis showed a de novo interstitial deletion of chromosome 7p with breakpoints located at p13 and p14. Cytogenetic analysis of polymorphisms of the heterochromatin in the pericentromeric region suggested the deleted chromosome was of paternal origin. This case confirms the localization of Greig syndrome to 7p13 and emphasizes the importance of performing cytogenetic studies on patients with Mendelian disorders who have unusual findings or cognitive abnormalities in a disorder usually associated with normal intellect. Review of clinical features in published reports of patients with a deletion involving 7p13 showed a number to have features overlapping with Greig syndrome. Because of this, we suggest that cytogenetic aberrations, particularly chromosomal microdeletions, may represent a significant etiology for Greig syndrome. 相似文献
19.
Two interconvertible forms of glycogen synthase and glycogen phosphorylase, one active (a) or the other less active (b), were predominantly present in a thermosensitive adenylate-cyclase-deficient mutant that had been preincubated at the restrictive temperature of 35 degrees C, either in the presence or in the absence of glucose. Glycogen phosphorylase was at least 20-fold less active after incubation of the cells in the presence of glucose, but this residual activity had kinetic properties identical to those of the active form of enzyme, obtained after incubation in the absence of glucose; this suggests that the b form might be completely inactive and that the low activity measured after glucose treatment must be attributed to a residual amount of phosphorylase a. By contrast, the kinetic properties of the two forms of glycogen synthase were very different. When measured in the absence of glucose 6-phosphate, the two forms of enzyme had a similar affinity for UDP-Glc but differed essentially by their Vmax. Glucose 6-phosphate had no effect on synthase a, but increased both Vmax and Km of synthase b; these effects, however, were in great part counteracted by sulfate and by inorganic phosphate, the latter also having the property of increasing the Km of the a form, without affecting Vmax. It was estimated that at physiological concentrations of substrates and effectors, synthase a was about 20-fold more active than synthase b. When an extract of cells that had been preincubated in the absence of glucose was gel-filtered and then incubated at 30 degrees C, phosphorylase was progressively fully inactivated and synthase was partially activated; these reactions were severalfold faster and, in the case of glycogen synthase, more complete in the presence of 10 mM glucose 6-phosphate. When a gel-filtered extract of cells that had been preincubated in the presence of glucose was incubated at 30 degrees C in the presence of ATP-Mg and EGTA, phosphorylase became activated and synthase was inactivated; the first of these two reactions was severalfold stimulated by micromolar concentrations of Ca2+, whereas both reactions were completely inhibited by 10 mM glucose 6-phosphate and only slightly and irregularly stimulated by cyclic AMP. 相似文献
20.
Alcohol use during adolescence has profound and enduring consequences on decision-making under risk. However, the fundamental psychological processes underlying these changes are unknown. Here, we show that alcohol use produces over-fast learning for better-than-expected, but not worse-than-expected, outcomes without altering subjective reward valuation. We constructed a simple reinforcement learning model to simulate altered decision making using behavioral parameters extracted from rats with a history of adolescent alcohol use. Remarkably, the learning imbalance alone was sufficient to simulate the divergence in choice behavior observed between these groups of animals. These findings identify a selective alteration in reinforcement learning following adolescent alcohol use that can account for a robust change in risk-based decision making persisting into later life. 相似文献